THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Уровни организации органического мира - дискретные состояния биологических систем, характеризующиеся соподчиненностью, взаимосвязанностью, специфическими закономерностями.

Структурные уровни организации жизни чрезвычайно многообразны, но основными являются молекулярный, клеточный, онтогенетический, популяционно-видовой, бигиоценотический и биосферный.

1. Молекулярно-генетический уровень жизни. Важнейшими задачами биологии на этом этапе является изучение механизмов передачи генной информации, наследственности и изменчивости.

Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является механизм мутации генов - непосредственное преобразование самих генов под воздействием внешних факторов. Факторами, вызывающими мутацию, являются: радиация, токсические химические соединения, вирусы.

Еще один механизм изменчивости - рекомбинация генов. Такой процесс имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации.

Еще один механизм изменчивости был открыт лишь в 1950 -е гг. Это - неклассическая рекомбинация генов, при котором происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего эти элементы привносятся в клетку вирусами.

2. Клеточный уровень. Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию. Цитология - наука, изучающая живую клетку, ее строение, функционирование как элементарной живой системы, исследует функции отдельных клеточных компонентов, процесс воспроизводства клеток, приспособление к условиям среды и др. Также цитология исследует особенности специализированных клеток, становление их особых функций и развитие специфических клеточных структур. Таким образом, современная цитология была названа физиологией клетки.

Значительным продвижением в изучении клеток произошло в начале 19 века, было открыто и описано клеточное ядро. На основании этих исследований и была создана клеточная теория, ставшая величайшим событием в биологии 19 в. Именно эта теория послужила фундаментом для развития эмбриологии, физиологии, теории эволюции.

Важнейшая часть всех клеток - ядро, которое хранит и воспроизводит генетическую информацию, регулирует процессы обмена веществ в клетке.

Все клетки делятся на две группы:

· Прокариоты - клетки, лишенные ядра

· Эукариоты - клетки содержащие ядра

Изучая живую клетку, ученые обратили внимание на существование двух основных типов ее питания, что позволило все организмы разделить на два типа:

· Автотрофные - сами производят необходимые им питательные вещества

· Гетеротрофные - не могут обходиться без органической пищи.

Позднее были уточнены такие важные факторы, как способность организмов синтезировать необходимые вещества (витамины, гормоны), обеспечивать себя энергией, зависимость от экологической среды и др. Таким образом, сложный и дифференцированный характер связей свидетельствует о необходимости системного подхода к изучению жизни и на онтогенетическом уровне.

3. Онтогенетический уровень. Многоклеточные организмы. Этот уровень возник в результате формирования живых организмов. Основной единицей жизни выступает отдельная особь, а элементарным явлением - онтогенез. Изучением функционирования и развития многоклеточных живых организмов занимается физиология. Эта наука рассматривает механизмы действия различных функций живого организма, их связь между собой, регуляцию и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи. По сути дела это и есть процесс онтогенеза - развитие организма от рождения до смерти. При этом происходит рост, перемещение отдельных структур, дифференциация и усложнение организма.

Все многоклеточные организмы состоят из органов и тканей. Ткани - это группа физически объединенных клеток и межклеточных веществ для выполнения определенных функций. Их изучение является предметом гистологии.

Органы - это относительно крупные функциональные единицы, которые объединяют различные ткани в те или иные физиологические комплексы. В свою очередь органы входят в состав более крупных единиц - систем организма. Среди них выделяют нервную, пищеварительную, сердечнососудистую, дыхательную и другие системы. Внутренние органы есть только у животных.

4. Популяционно-биоценотический уровень. Это надорганизменный уровень жизни, основной единицей которого является популяция. В отличии от популяции видом называется совокупность особей, сходных по строению и физиологическим свойствам, имеющих общее происхождение, могущих свободно скрещиваться и давать плодовитое потомство. Вид существует только через популяции, представляющие генетически открытые системы. Изучением популяций занимается популяционная биология.

Термин "популяция" был введен одним из основоположником генетики В. Иогансеном, который назвал так генетически неоднородную совокупность организмов. Позднее популяция стала считаться целостной системой, непрерывно взаимодействующей с окружающей средой. Именно популяции являются теми реальными системами, через которые существуют виды живых организмов.

Популяции - генетически открытые системы, так как изоляция популяций не абсолютна и периодически не бывает возможным обмен генетической информацией. Именно популяции выступают в качестве элементарных единиц эволюции, изменения их генофонда ведут к появлению новых видов.

Популяции, способны к самостоятельному существованию и трансформации, объединяются в совокупности следующего надорганизменного уровня - биоценозы. Биоценоз - совокупность популяций, проживающих на определенной территории.

Биоценоз представляет собой закрытую для чужих популяций систему, для составляющих его популяций - это открытая система.

5. Биогеоцетонический уровень. Биогеоценоз - устойчивая система, которая может существовать на протяжении длительного времени. Равновесие в живой системе динамично, т.е. представляет собой постоянное движение вокруг определенной точки устойчивости. Для ее стабильного функционирования необходимо наличие обратных связей между ее управляющей и исполняющей подсистемами. Такой способ поддержания динамического равновесия между различными элементами биогеоценоза, вызвано массовым размножением одних видов и сокращением или исчезновением других, приводящее к изменению качества окружающей среды, называют экологической катастрофой.

Биогеоценоз - это целостная саморегулирующаяся система, в которой выделяется несколько типов подсистем. Первичные системы - продуценты, непосредственно перерабатывающие неживую материю; консументы - вторичный уровень, на котором вещество и энергия получаются за счет использования продуцентов; затем идут консументы второго порядка. Также существуют падальщики и редуценты.

Через эти уровни в биогеоценозе проходит круговорот веществ: жизнь участвует в использовании, переработки и восстановлении различных структур. В биогеоценозе - однонаправленный энергетический поток. Это делает его незамкнутой системой, непрерывно связанной с соседними биогеоценозами.

Саморегуляция биогеоценлзов протекает тем успешнее, чем разнообразнее количество составляющих его элементов. От многообразия его компонентов зависит и устойчивость биогеоценозов. Выпадение одного или нескольких компонентов может привести к необратимому нарушению равновесия и гибели его как целостной системы.

6. Биосферный уровень. Это наивысший уровень организации жизни, охватывающий все явления жизни на нашей планете. Биосфера - это живое вещество планеты и преобразованная им окружающая среда. Биологический обмен веществ - это фактор, который объединяет все другие уровни организации жизни в одну биосферу. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле. Таким образом, биосфера является единой экологической системой. Изучение функционирования этой системы, ее строения и функций - важнейшая задача биологии на этом уровне жизни. Занимаются изучением этих проблем экология, биоценология и биогеохимия.

Разработка учения о биосфере неразрывно связана с именем выдающегося российского ученого В.И. Вернадского. Именно ему удалось доказать связь органического мира нашей планеты, выступающего в виде единого нераздельного целого, с геологическими процессами на Земле. Вернадский открыл и изучил биогеохимические функции живого вещества.

Благодаря биогенной миграции атомов живое вещество выполняет свои геохимические функции. Современная наука выделяет пять геохимических функций, которые выполняет живое вещество.

1. Концентрационная функция выражается в накоплении определенных химических элементов внутри живых организмов благодаря их деятельности. Результатом этого стало появление запасов полезных ископаемых.

2. Транспортная функция тесно связана с первой функцией, так как живые организмы переносят нужные им химические элементы, которые затем накапливаются в местах их обитания.

3. Энергетическая функция обеспечивает потоки энергии, пронизывающие биосферу, что дает возможность осуществлять все биогеохимические функции живого вещества.

4. Деструктивная функция - функция разрушения и переработки органических останков, в ходе этого процесса накопленные организмами вещества возвращаются в природные циклы, идет круговорот веществ в природе.

5. Среднеобразующая функция - преобразование окружающей среды под действием живого вещества. Весь современный облик Земли - состав атмосферы, гидросферы, верхнего слоя литосферы; большая часть полезных ископаемых; климат - является результатом действия Жизни.

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

2. Фундаментальные свойства живой материи

Обмен веществ (метаболизм)

Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.

Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

Наследственность и изменчивость

Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

Индивидуальное развитие организмов

Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Раздражимость

Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

4. Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку , но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

Общий - встречающиеся у большинства живых организмов;

Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;

Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

Трансляция (РНК → белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы ) ядерной мембраной , поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

5. Обратная транскрипция - это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК . Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии , которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов , например, ВИЧ и в случае ретротранспозонов .

Трансдукция (от лат. transductio - перемещение) - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом . Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов . К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Векторная молекула ДНК - это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:

Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)

Наличие селективного маркера

Наличие удобных сайтов рестрикции

В роли векторов чаще всего выступают бактериальные плазмиды.

Различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобаль- ный (биосферный) уровни организации живого. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень. Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов и стероидов, находящихся в клетках и получивших название биологических молекул. На этом уровне зачинаются и осуществляются важнейшие процессы жизнедеятельно- сти (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.). Физико-химическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основная масса живого представлена углеродом, кислородом, водородом и азотом. Из группы атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлены нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами, их неспецифи-

ческих частей (участков). Все макромолекулы универсальны, так как построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин или тимин), вследствие чего любой нуклеотид неповторим по своему составу. Неповторима также и вторичная структура молекул ДНК.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Более того, эти процессы осуществляются в результате одних и тех же этапов метаболизма. Например, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов. Универсальными являются также окисление жирных кислот, гликолиз и другие реакции.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, так как они являются основными структурными элементами клеток, катализаторами и регуляторами реакций в клетках. Углеводы и липиды служат важнейшими источниками энергии, тогда как стероиды имеют значение для регуляции ряда метаболических процессов.

На молекулярном уровне осуществляется превращение энергии - лучистой энергии в химическую, запасаемую в углеводах и других химических соединениях, а химической энергии углеводов и других молекул - в биологически доступную энергию, запасаемую в форме макроэргических связей АТФ. Наконец, здесь происходит превращение энергии макроэргических фосфатных связей в работу - механическую, электрическую, химическую, осмотическую. Механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулами и следующим за ним уровнем (клеточным), так как являются материалом, из которого образуются надмолекулярные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень. Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организ-

мов (бактерии, простейшие и др.), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, элементарными единицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клеткамиэукариотами, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки».

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных еди- ниц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток-эукариотов значительно развиты мембранные системы (плазматическая мембра- на, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы). Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают пространственное разделение в клетках многих биологических молекул, а их физическое состояние позволяет осуществлять постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Таким образом, мембраны являются системой, компоненты которой находятся в движении. Для них характерны различные перестройки, что определяет раздражимость клеток - важнейшее свойство живого.

Тканевой уровень. Данный уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, кровь, нервная и репродуктивная). У рас-

тений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень. Представлен органами организмов. У растений и животных органы формируются за счет разного количества тканей. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл. У более совершенных организмов имеются системы органов. Для позвоночных характерна цефализация, заклю- чающаяся в сосредоточении важнейших нервных центров и органов чувств в голове.

Организменный уровень. Данный уровень представлен самими организмами - одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность организменного уровня заключается в том, что на этом уровне происходят декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида.

Видовой уровень. Данный уровень определяется видами растений и животных. В настоящее время насчитывают около 500 тыс. видов растений и около 1,5 млн видов животных, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Вид является также единицей классификации живых существ.

Популяционный уровень. Растения и животные не существуют изолированно; они объединены в популяции, которые характеризуются определенным генофондом. В пределах одного и того же вида может насчитываться от одной до многих тысяч популяций. В популяциях осуществляются элементарные эволюционные преобразования, происходит выработка новой адаптивной формы.

Биоценотический уровень. Представлен биоценозами - сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависящих сообществ организмов и абиотических факторов среды. Экосистемам присуще подвижное равновесие между организмами и абиотическими факторами. На том уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Глобальный (биосферный) уровень. Данный уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство. Живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. появляется новое качество.

ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ

1. В чем заключается всеобщий методологический подход к пониманию сущности жизни?

2. Можно ли определить сущность жизни, если да, то в чем заключается ее определение?

3. Возможна ли постановка вопроса о субстрате жизни?

4. Назовите свойства живого. Укажите, какие из этих свойств характерны для неживого и какие только для живого?

5. Какое значение для биологии имеет подразделение живого на уровни вообще и для медицины в частности?

6. Какими общими чертами характеризуются разные уровни организации живого?

7. Какое значение для студента-медика имеет изучение проблем, описываемых в этой главе?

8. Почему нуклеопротеиды считают субстратом жизни и при каких условиях они выполняют эту роль?

9. Каковы свойства «мертвого» и «живого»?

10. Обладают ли выделенные из клеток нуклеопротеиды свойствами субстрата жизни?

Для живой природы нашей планеты характерно сложное, иерархическое соотношение уровней организации . Весь органический мир и окружающая среда образует биосферу, которая, в свою очередь состоит из биогеоценозов (экосистем) - территорий с характерными природными условиями и определёнными растительными и животными комплексами (биоценозами). Биоценозы образованы популяциями - группами растительных и животных организмов одного вида, живущими на определённой территории и способнымы к произведению. Популяции состоят из представителей конкретных видов (особей), способных свободно скрещиваться и давать плодовитое потомство. Многоклеточные организмы состоят из органов и тканей, образованных клетками. Одноклеточные организмы и клетки образованы внутриклеточными структурами, которые состоят из молекул.

Исходя из этого, выделяют несколько уровней организации живой материи .

Для каждого уровня организации живых организмов характерны свои закономерности, связанные со своими конкретными принципами организации, особенностями взаимоотношения с другими уровнями.

Общая биология изучает основные закономерности жизненных явлений, которые происходят на различных уровнях организации живого. Рассмотрение организации живой материи начинается из выяснения строения и свойств сложных органических молекул. Клетки многоклеточных организмов входят в состав тканей, две или несколько тканей формируют орган. Многоклеточный организм имеет сложное строение, который состоит из тканей и органов, в то же время есть элементарной единицей биологического вида. Взаимодействуя между собой виды составляют сообщество, или экологическую систему, которая, в свою очередь, является одним из компонентов биосферы.

Каждый уровень организации организмов изучают соответствующие отрасли биологии.

Молекулярный уровень

Замечание 1

Любая живая система, как бы сложно она не была организована,определяется на уровне функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, а так же иных важных органических веществ. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и т. п.

Молекулярная биология, молекулярная генетика, физиология, цитохимия, биохимия, биофизика, определённые разделы вирусологии, микробиологии изучают физико-химические процессы, происходящие в живом организме (синтез, разложение и взаимные преобразования белков, нуклеиновых кислот, полисахариды, липидов и других веществ в клетке; обмен веществ, энергии и информации, которые регулируют эти процессы).

Такие исследования живых систем показали, что они состоят из низко- и высокомолекулярных органических соединений, которые в неживой природе практически невозможно обнаружить. Для живых организмов наиболее характерны такие биополимеры, как белки, нуклеиновые кислоты, полисахариды, липиды (жироподобные соединения) и составляющие их молекул (аминокислоты, нуклеотиды, моносахариды, жирные кислоты). Так же, на этом уровне изучается синтез, распад и взаимные преобразования этих соединений в клетках, обмен веществ, энергии и информации, регуляция данных процессов.

В результате подобных исследований было выяснено, что важнейшая особенность основных путей обмена - действие биологических катализаторов - ферментов (соединений белковой природы), которые строго избирательно влияют на скорость химических реакций. Так же изучено строение некоторых аминокислот, ряда белков и многих простых органических соединений. Установлено, что химическая энергия, которая освобождается в ходе биологического окисления (процессы дыхания, гликолиза), запасается в виде богатых на энергию соединений (в основном - аденозинфосфорные кислоты АТФ, АДФ и др.), а потом используется в процессах, которые требуют поступления энергии (мышечные сокращения, синтез и транспорт веществ). Крупным успехом стало открытие генетического кода. Выяснено, что закодированная в ДНК наследственность через белки-ферменты контролирует как структурные белки, так и все основные свойства клеток и организма в целом.

Исследования на молекулярном уровне требуют выделения и изучения всех видов молекул, входящих в состав клетки, раскрытия их взаимосвязи между собой.

Используемые методы исследования на молекулярном уровне:

  • электрофорез (для разделения макромолекул с использованием их различия в зарядах);
  • ультрацентрифугирование (для разделения макромолекул с использованием их различия в плотности и размерах);
  • хроматография (для разделения макромолекул с использованием их различия в адсорбционных свойствах);
  • рентгеноструктурный анализ (изучают взаимное пространственное расположение атомов в сложных молекулах);
  • радиоизотопы (исследование путей превращения веществ, скорости их синтеза и распада);
  • искусственное моделирование систем из выделенных клеточных элементов (воспроизведение процессов, идущих в клетке - все биохимические процессы в клетке происходят не в однородной смеси веществ, а на определённых клеточных структурах).

Клеточный уровень

На клеточном уровне цитология, гистология, и их отделы (кариология, цито- и гистохимия, цитофизиология, цитогенетика), многие разделы физиологии, микробиологии и вирусологии изучают строение клетки и внутренних клеточных компонентов, а также связи и отношения между клетками в тканях и органах организма. Свободноживущих неклеточных форм жизни не существует.

Клетка - основная самостоятельная функциональная и структурная единица многоклеточного организма. Существуют одноклеточные организмы (водоросли, грибы, простейшие, бактерии). Также клетка есть единицей развития всех живых организмов, которые существуют на Земле. Свойства клетки определяются её компонентами, осуществляющими различные функции.

Благодаря исследованиям на клеточном уровне изучены основные компоненты клетки, строение клеток и тканей, их изменения в процессе развития.

Методы исследования на клеточном уровне:

  • микроскопия (световой микроскоп позволяет видеть объекты до 1 мкм);
  • цветные гистохимические реакции (выявление локализации в клетке различных химических веществ и ферментов);
  • авторадиография (выявление в клетке мест синтеза макромолекул);
  • электронная микроскопия (различение структур вплоть до макромолекул, хотя описание их строения часто затруднительно из-за недостаточной контрастности изображения);
  • центрифугирование (изучение функций внутриклеточных компонентов - их выделяют из разрушенных (гомогенизированных) клеток);
  • культура тканей (исследование свойств клеток);
  • микрохирургия (обмен ядрами между клетками, слияние (гибридизация) клеток.

Тканевый уровень

Ткань есть совокупностью сходных за строением клеток, объединённых исполнением общей функции. Сотни разнообразных клеток входят в составляют тело разнообразных многоклеточных организмов. Разнообразные клетки животных образуют $4$ типа тканей: нервную, соединительную, эпителиальную и мышечную. У растений различают образующие и постоянные ткани. К постоянным тканям относятся покровные, проводящие, механические и основная ткань.

Органный уровень

Определение 2

Органы - это высокодефференциированные части тела, которые размещены в определённом месте и исполняют специальные функции. Это структурно - функциональные объединения нескольких типов тканей. Они образуются в процессе развития из клеток различных тканей.

Группы разных органов коллективно функционируют для исполнения общей для организма функции. У человека есть такие системы органов: пищеварительная, дыхательная, сердечно - сосудистая, нервная, секреторная, выделительная, репродуктивная, Эндокринная, мышечная, скелетная и система покровных тканей. Каждый отдельный орган системы исполняет конкретную функцию, но все вместе работают как одна «команда», обеспечивая максимальную эффективность всей системы. Все системы органов функционируют во взаимосвязи и регулируются нервной и эндокринной системами. Нарушение функционирования любого органа приводит к патологии всей системы и даже организма.

Организменный уровень

Физиология (растений и животных, высшей нервной деятельности), экспериментальная морфология, эндокринология, эмбриология, иммунология, а также ещё рад других биологических отраслей изучают процессы и явления, происходящие в особи, и согласованное функционирование её органов и систем.

На этом уровне для создания общей теории онтогенеза проводятся исследования, направленные на раскрытие причинных механизмов становления биологической организации, её дифференцировки и интеграции, реализации генетической информации в онтогенезе. Также изучаются механизмы работы органов и их систем, их роль в жизнедеятельности организма, взаимные влияния органов, нервную и гуморальную регуляцию их функций, поведение животных, приспособительные изменения и др.

На этом уровне изучаются также механизм работы органов и систем, их роль в жизнедеятельности организма, взаимоотношения органов, поведение организмов, приспособительные изменения.

В данный момент применяются методы исследования:

  • электрофизиологические (состоят в отведении, усилении и регистрации биоэлектрических потенциалов);
  • биохимические (проводится изучение эндокринной регуляции - выделение и очистка гормонов, синтез их аналогов, изучение биосинтеза и механизмов действия гормонов);
  • кибернетические (исследование ВНД животных и человека методом моделирования);
  • экспериментальные (выработка условных рефлексов, постановка задач).

Популяционно - видовой уровень

Определение 3

Определённые отрасли биологии (морфология, физиология, генетика, экология) изучают элементарную единицу эволюционного процесса - популяцию - совокупность особей одного вида, населяющих определённую территорию, более или менее изолированную от соседних групп.

Изучение состава и динамики популяции неразрывно связано с молекулярным, клеточным и организменным уровнями.

Методами исследования являются методы тех наук, которые изучают конкретно поставленные на этом уровне вопросы:

  • генетические методы - характер распределения наследственных особенностей в популяциях;
  • морфологические
  • физиологические
  • экологические.

Популяция и вид как целое могут служить объектами исследования самых разных биологических отраслей.

Биогеоценотический, или биосферный, уровень

Определение 4

Биогеоценология, экология, биогеохимия и другие отрасли биологии изучают процессы, происходящие в биогеоценозах (экосистемах) - элементарных структурных и функциональных единицах биосферы.

На этом уровне ведутся комплексные исследования, охватывающие взаимоотношения биотических и абиотических компонентов, которые входят в состав биогеоценоза; изучается движение живого вещества в биосфере, пути и закономерности протекания энергетических кругооборотов. Такой подход даёт возможность предвидеть последствия хозяйственной деятельности человека и в форме международной программы «Человек и биосфера» координировать усилия биологов многих стран.

Важное практическое значение имеет изучение биологической продуктивности биогеоценозов (утилизации энергии солнечной радиации путём фотосинтеза и использования гетеротрофными организмами энергии, запасённой автотрофами).

Замечание 2

Необходимость детального изучения биосферного уровня организации живого обусловливается тем, что биогеоценозы - среда, в которой протекают любые жизненные процессы на нашей планете.

Все живые существа на планете подразделяются по различным группам и системам. Об этом рассказывает ученику биология еще в начальных классах средней школы. Сейчас же хочется весьма подробно изучить уровни организации живой природы, в итоге представив все полученные знания в краткой и удобной для понимания таблице.

Немного об уровнях

Если говорить в общем, то наука насчитывает 8 таких уровней. Но по какому же принципу происходит деление? Тут все просто: каждый последующий уровень имеет в своем составе все предыдущие. То есть он больше и существеннее, объемнее и полнее.

Уровень первый - молекулярный

Подробно данный уровень изучает молекулярная биология. О чем же тут идет речь? Каково строение белков, какие функции они выполняют, что такое нуклеиновые кислоты и их работа в генетике, синтез белка, РНК и ДНК - всеми этими процессами и нагружен молекулярный уровень. Именно тут начинаются важнейшие процессы жизнедеятельности всех организмов: обмен веществ, выработка энергии, необходимой для существования, и т. д. Ученые утверждают, что данный уровень сложно назвать живым, он, скорее, считается химическим.

Уровень второй - клеточный

Чем же интересен клеточный уровень организации живой природы? Он следует за молекулярным и, как становится понятно уже из названия, занимается клетками. Биологию этих частичек изучает такая наука, как цитология. Сама по себе клетка - это мельчайшая неделимая частица в организме человека. Тут рассматриваются все процессы, которые связаны непосредственно с жизнедеятельностью клетки.

Уровень третий - тканевый

Специалисты данный уровень называют еще и многоклеточным. И это неудивительно. Ведь, по сути, ткань - это совокупность клеток, которые имеют почти одинаковое строение и схожие функции. Если же говорить о тех науках, которые изучают этот уровень, то тут речь идет о все той же гистологии, а также гистохимии.

Уровень четвертый - органный

Рассматривая уровни организации живой природы, нужно также рассказать и об органном. Чем же он особенен? Так, из тканей формируются органы у многоклеточных организмов и органеллы - у одноклеточных. Науки, которые занимаются этими вопросами, - анатомия, эмбриология, физиология, ботаника и зоология.

Нужно также отметить, что, изучая уровни организации живой природы, специалисты иногда объединяют в одну главу тканевый и организменный. Ведь они весьма тесно связаны друг с другом. В таком случае речь идет об органотканевом уровне.

Пятый уровень - организменный

Следующий уровень носит название в науке «организменный». Чем же он отличается от предыдущих? Помимо того что он включает в свой состав предыдущие уровни организации живой природы, так еще тут происходит деление на царства - животных, растений, а также грибов. Занимается он следующими процессами:

  • Питание.
  • Размножение.
  • Обмен веществ (как и на клеточном уровне).
  • Взаимодействие не только между организмами, но и с окружающей средой.

На самом деле функций еще очень и очень много. Этим разделом занимаются такие науки, как генетика, физиология, анатомия, морфология.

Шестой уровень - популяционно-видовой

Тут также все просто. Если некоторые организмы имеют морфологическую схожесть, то есть они примерно одинаково устроены и имеют схожий генотип, ученые их объединяют в один вид или же популяцию. Главные процессы, которые тут происходят, - это макроэволюция (то есть изменение организма под воздействием окружающей среды), а также взаимодействие между собой (это может быть как борьба за выживание, так и размножение). Изучением этих процессов занимается экология и генетика.

Седьмой уровень - биогеоценотический

Название трудновыговариваемое, но вполне простое. Происходит от слова биогеоценоз. Тут уже рассматриваются множественные процессы, в которых происходит взаимодействие организмов. Речь идет и о пищевых цепочках, о конкуренции и размножении, о взаимовлиянии организмов и окружающей среды друг на друга. Данными вопросами занимается такая наука, как экология.

Последний, восьмой уровень - биосферный

Тут уже биология призвана решать все глобальные проблемы. Ведь по сути биосфера - это огромнейшая экосистема, где происходит круговорот химических элементов и веществ, процессы превращения энергии для обеспечения жизнедеятельности всего живого на земле.

Простые выводы

Рассмотрев все уровни структурной организации живой природы, а их, как стало понятно, 8, можно представить себе картину всего живого на земле. Ведь только структурировав свои знания, можно основательно уяснить суть вышеописанного.

Организменный

Либо особь, либо организм

Происходят процессы дифференцировки

Популяционно-видовой

Популяция

Происходят процессы изменения генотипа в оной популяции

Биогеоценотически-биосферный

Биогеоценоз

Происходит круговорот веществ

Молекулярно-генетический

Деятельность - перенос генетической информации внутри клеток

Как легче всего представить уровни организации живой природы? Таблица - вот что отлично иллюстрирует любой материал. Но для облегчения понимания ученые частенько в таблицу выносят всего лишь 4 объединенных уровня, представленных выше.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама