THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В самом начале работы полезно будет дать несколькоопределений ипояснений.

Если, в каком то месте, на движущиеся тела, обладающиезарядом, действует сила, которая не действует на неподвижные или лишенныезаряда тела, то говорят, что в этом месте присутствует магнитное поле – одна из форм более общего электромагнитного поля .

Есть тела, способные создавать вокруг себя магнитноеполе (и на такое тело тоже действует сила магнитного поля), про них говорят,что эти тела намагничены и обладают магнитным моментом, который и определяетсвойство тела создавать магнитное поле. Такие тела называют магнитами .

Следует отметить, что разные материалы по разномуреагируют на внешнее магнитное поле.

Есть материалы ослабляющие действие внешнего поля внутрисебяпарамагнетики и усиливающие внешнее поле внутри себядиамагнетики .

Есть материалы с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя - железо,кобальт, никель, гадолиний, сплавы и соединения этих металлов, их называют– ферромагнетики.

Есть среди ферромагнетиков материалы которыепосле воздействия на них достаточно сильного внешнего магнитного поля самистановятся магнитами – это магнитотвердые материалы.

Есть материалы концентрирующие в себе внешнее магнитное поле и, пока онодействует, ведут себя как магниты; но если внешнее поле исчезает они нестановятся магнитами – это магнитомягкие материалы

ВВЕДЕНИЕ.

Мы привыкли к магниту иотносимся к нему чуточку снисходительно как к устаревшему атрибуту школьныхуроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В нашихквартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах,в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас,рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на котороймы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнитещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическоегенерирование электроэнергии, ускорение заряженных частиц в синхротронах,подъём затонувших судов – всё это области, где требуются грандиозные,невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных,ультрасильных и ещё более сильных магнитных полей стала одной из основных всовременной физике и технике.

Магнит известен человеку снезапамятных времён. До нас дошли упоминания

о магнитах и их свойствах втрудах Фалеса Милетского (прибл. 600 до н.э.) и Платона (427–347 дон.э.). Само слово «магнит» возникло в связи с тем, что природные магниты былиобнаружены греками в Магнесии (Фессалия).

Естественные (илиприродные) магниты встречаются в природе в виде залежей магнитных руд. ВТартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.

Искусственные магниты - это магниты созданные человеком на основе различных ферромагнетиков . Такназываемые «порошковые» магниты (из железа, кобальта и некоторых другихдобавок) могут удержать груз более чем 5000 раз превышающий их собственнуюмассу.

Существуютискусственные магниты двух разных видов:

Одни – так называемыепостоянныемагниты ,изготовляемые из «магнитно-твердых » материалов.Их магнитные свойства не связаны с использованием внешних источников или токов.

К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого » железа.Создаваемые ими магнитные поля обусловлены в основном тем, что по проводуобмотки, охватывающей сердечник, проходит электрический ток.

В 1600 году в Лондоне вышла книга королевского врачаВ. Гильберта “О магните, магнитных телах и большом магните - Земле”. Этосочинение явилось первой известной нам попыткой исследования магнитных явленийс позиций науки. В этом труде собраны имевшиеся тогда сведения об электричествеи магнетизме, а также результаты собственных экспериментов автора.

Из всего, с чемсталкивается человек, он прежде всего стремится извлечь практическую пользу. Неминовал этой судьбы и магнит

В моей работе я попытаюсь проследить, как используютсямагниты человеком не для войны, а в мирных целях, в том числе применениемагнитов в биологии, медицине, в быту.

КОМПАС, прибор для определения горизонтальных направлений на местности.Применяется для определения направления, в котором движется морское, воздушноесудно, наземное транспортное средство; направления, в котором идет пешеход;направления на некоторый объект или ориентир. Компасы подразделяются на дваосновных класса: магнитные компасы типа стрелочных, которыми пользуютсятопографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

К 11 в. относитсясообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природныхмагнитов и использовании их в навигации.Если

длинная игла из природногомагнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальнойплоскости, то она всегда обращена одним концом к северу, а другим – к югу.Пометив указывающий на север конец, можно пользоваться таким компасом дляопределения направлений.

Магнитные эффектыконцентрировались у концов такой иглы, и поэтому их назвали полюсами(соответственно северным и южным).

Основное применение магнитнаходит в электротехнике, радиотехнике, приборостроении, автоматике ителемеханике. Здесь ферромагнитные материалы идут на изготовлениемагнитопроводов, реле и т.д.

В 1820 Г.Эрстед (1777–1851) обнаружил, что проводник стоком воздействует на магнитную стрелку, поворачивая ее. Буквально неделейпозже Ампер показал, что два параллельных проводника с током одного направленияпритягиваются друг к другу. Позднее он высказал предположение, что всемагнитные явления обусловлены токами, причем магнитные свойства постоянныхмагнитов связаны с токами, постоянно циркулирующими внутри этих магнитов. Этопредположение полностью соответствует современным представлениям.

Электромашинныегенераторы и электродвигатели - машинывращательного типа, преобразующие либо механическую энергию в электрическую(генераторы), либо электрическую в механическую (двигатели). Действиегенераторов основано на принципе электромагнитной индукции: в проводе,движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действиеэлектродвигателей основано на том, что на провод с током, помещенный впоперечное магнитное поле, действует сила.

Магнитоэлектрическиеприборы. В таких приборахиспользуется сила взаимодействия магнитного поля с током в витках обмоткиподвижной части, стремящаяся повернуть последнюю

Индукционныесчетчики электроэнергии . Индукционныйсчетчик представляет собой не что иное, как маломощный электродвигательпеременного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящийдиск, помещенный между обмотками, вращается под действием крутящего момента,пропорционального потребляемой мощности. Этот момент уравновешивается токами,наводимыми в диске постоянным магнитом, так что частота вращения дискапропорциональна потребляемой мощности.

Электрические наручные часы питаются миниатюрной батарейкой. Для их работытребуется гораздо меньше деталей, чем в механических часах; так, в схемутипичных электрических портативных часов входят два магнита, две катушкииндуктивности и транзистор.

Замок- механическое, электрическое или электронное устройство,ограничивающее возможность несанкционированного пользования чем-либо. Замокможет приводиться в действие устройством (ключом), имеющимся в распоряженииопределенного лица, информацией (цифровым или буквенным кодом), вводимой этимлицом, или какой либо индивидуальной характеристикой (например, рисункомсетчатки глаза) этого лица. Замок обычно временно соединяет друг с другом два узлаили две детали в одном устройстве. Чаще всего замки бывают механическими, новсе более широкое применение находят электромагнитные замки.

Магнитные замки . Вцилиндровых замках некоторых моделей применяются магнитные элементы. Замок иключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочнуюскважину вставляется правильный ключ, он притягивает и устанавливает в нужноеположение внутренние магнитные элементы замка, что и позволяет открыть замок.

Динамометр - механический или электрический прибор для измерениясилы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различныхконструкций; к ним относятся, например, тормоз Прони, гидравлический иэлектромагнитный тормоза.

Электромагнитный динамометр может бытьвыполнен в виде миниатюрного прибора, пригодного для измерений характеристикмалогабаритных двигателей.

Гальванометр –чувствительный прибор для измерения слабых токов. В гальванометре используетсявращающий момент, возникающий при взаимодействии подковообразного постоянногомагнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешеннойв зазоре между полюсами магнита. Вращающий момент, а следовательно, иотклонение катушки пропорциональны току и полной магнитной индукции в воздушномзазоре, так что шкала прибора при небольших отклонениях катушки почти линейна.Приборы на его базе - самый распространенный вид приборов.

Спектр выпускаемых приборов широк иразнообразен: приборы щитовые постоянного и переменного тока(магнитоэлектрической, магнитоэлектри- ческой с выпрямителем и электромагнитнойсистем), комбинированные приборы ампервольтомметры, для диагностирования ирегулировки электрооборудования автомашин, измерения температуры плоскихповерхностей, приборы для оснащения школьных учебных кабинетов, тестеры иизмерители всевозможных электрических параметров

Производство абразивов- мелких, твердых, острых частиц, используемых в свободном или связанномвиде для механической обработки (в т.ч. для придания формы, обдирки,шлифования, полирования) разнообразных материалов и изделий из них (от большихстальных плит до листов фанеры, оптических стекол и компьютерных микросхем).Абразивы бывают естественные или искусственные. Действие абразивов сводится кудалению части материала с обрабатываемой поверхности. Впроцессе производства искусственных абразивов ферросилиций, присутствующий всмеси, оседает на дно печи, но небольшие его количества внедряются в абразив ипозже удаляются магнитом.

Магнитные свойства вещества находят широкое применение внауке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнетохимия (магнитохимия) - раздел физической химии, в которомизучается связь между магнитными и химическими свойствами веществ; кроме того,магнитохимия исследует влияние магнитных полей на химические процессы.магнитохимия опирается на современную физику магнитных явлений. Изучение связимежду магнитными и химическими свойствами позволяет выяснить особенностихимического строения вещества.

Магнитная дефектоскопия , методпоиска дефектов, основанный на исследовании искажений магнитного поля,возникающих в местах дефектов в изделиях из ферромагнитных материалов.

. Техника сверхвысокочастотного диапазона

Сверхвысокочастотный диапазон (СВЧ)- частотный диапазон электромагнитногоизлучения (100¸300 000 млн. герц), расположенный в спектре между ультравысокимителевизионными частотами и частотами дальней инфракрасной области

Связь. Радиоволны СВЧ-диапазона широкоприменяются в технике связи. Кроме различных радиосистем военного назначения,во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи.Поскольку такие радиоволны не следуют за кривизной земной поверхности, араспространяются по прямой, эти линии связи, как правило, состоят изретрансляционных станций, установленных на вершинах холмов или на радиобашнях синтервалами около 50 км.

Термообработка пищевых продуктов. СВЧ-излучениеприменяется для термообработки пищевых продуктов в домашних условиях и в пищевойпромышленности. Энергия, генерируемая мощными электронными лампами, может бытьсконцентрирована в малом объеме для высокоэффективной тепловой обработкипродуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой,бесшумностью и компактностью. Такие устройства применяются на самолетныхбортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, гдетребуются быстрые подготовка продуктов и приготовление блюд. Промышленностьвыпускает также СВЧ-печи бытового назначения.

Быстрый прогресс в области СВЧ-техники в значительной мересвязан с изобретением специальных электровакуумных приборов – магнетрона иклистрона, способных генерировать большие количества СВЧ-энергии. Генератор наобычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазонеоказывается весьма неэффективным.

Магнетрон. В магнетроне, изобретенном в Великобританииперед Второй мировой войной, эти недостатки отсутствуют, поскольку за основувзят совершенно иной подход к генерации СВЧ-излучения – принцип объемногорезонатора

В магнетроне предусмотрено несколько объемных резонаторов,симметрично расположенных вокруг катода, находящегося в центре. Прибор помещаютмежду полюсами сильного магнита.

Лампа бегущей волны (ЛБВ). Еще одинэлектровакуумный прибор для генерации и усиления электромагнитных волнСВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачаннуютрубку, вставляемую в фокусирующую магнитную катушку.

Ускоритель частиц , установка, в которой с помощью электрических и магнитных полейполучаются направленные пучки электронов, протонов, ионов и других заряженныхчастиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные иразнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинскойтерапии и диагностике у скорители играют важную практическую роль. Многиебольничные учреждения во всем мире сегодня имеют в своем распоряжении небольшиеэлектронные линейные ускорители, генерирующие интенсивное рентгеновскоеизлучение, применяемое для терапии опухолей. В меньшей мере используютсяциклотроны или синхротроны, генерирующие протонные пучки. Преимущество протоновв терапии опухолей перед рентгеновским излучением состоит в болеелокализованном энерговыделении. Поэтому протонная терапия особенно эффективнапри лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканейдолжно быть по возможности минимальным.

Представители различных наук учитывают магнитные поля всвоих исследованиях. Физик измеряет магнитные поля атомов и элементарныхчастиц, астроном изучает роль космических полей в процессе формирования новыхзвёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитныхруд, с недавнего времени биология тоже активно включилась в изучение ииспользование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе неучитывая существования каких-либо магнитных полей. Более того, некоторыебиологи считали нужным подчеркнуть, что даже сильное искусственное магнитноеполе не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влияниимагнитных полей на биологические процессы ничего не говорилось. В научнойлитературе всего мира ежегодно появлялись единичные позитивные соображения отом или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёкне мог растопить айсберг недоверия даже к постановке самой проблемы… И вдругручеёк превратился в бурный поток. Лавина магнитобиологических публикаций,словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанноувеличивается и заглушает скептические высказывания.

От алхимиков XVIвека и до наших дней биологическое действие магнита много раз находилопоклонников и критиков. Неоднократно в течение нескольких веков наблюдалисьвсплески и спады интереса к лечебному действию магнита. С его помощью пыталисьлечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли впечени и в желудке – сотни болезней.

Для лечебных целей магнитстал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружноесредство и в качестве амулета магнит пользовался большим успехом у китайцев,индусов, египтян, арабов. ГРЕКОВ, римлян и т.д. О его лечебных свойствахупоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XXвека широко распространились магнитные браслеты, благотворно влияющие набольных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитовиспользуются и электромагниты. Их также применяют для широкого спектра проблемв науке, технике, электронике, медицине (нервные заболевания, заболеваниясосудов конечностей, сердечно – сосудистые заболевания, раковыезаболевания).

Более всего учёныесклоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитныеизмерители скорости движения крови, миниатюрные капсулы, которые с помощью внешнихмагнитных полей можно перемещать по кровеносным сосудам чтобы расширять их,брать пробы на определённых участках пути или, наоборот, локально выводить изкапсул различные медикаменты.

Широко распространёнмагнитный метод удаления металлических частиц из глаза.

Большинству из нас известноисследование работы сердца с помощью электрических датчиков –электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создаютмагнитное поле сердца, которое в max значениях составляет 10-6 напряжённостимагнитного поля Земли. Ценность магнитокардиографии в том, что она позволяетполучить сведения об электрически “немых” областях сердца.

Надо отметить, что биологисейчас просят физиков дать теорию первичного механизма биологического действиямагнитного поля, а физики в ответ требуют от биологов побольше проверенныхбиологических фактов. Очевидно, что успешным будет тесное сотрудничестворазличных специалистов.

Важным звеном, объединяющиммагнитобиологические проблемы, является реакция нервной системы на магнитныеполя. Именно мозг первым реагирует на любые изменения во внешней среде. Именноизучение его реакций будет ключём к решению многих задач магнитобиологии.

Самый простой вывод, которыйможно сделать из выше сказанного – нет области прикладной деятельностичеловека, где бы не применялись магниты.

Использованная литература:

1) БСЭ, второе издание, Москва, 1957г.

2) Холодов Ю.А. “Человек в магнитнойпаутине”, “Знание”, Москва, 1972 г.

3) Материалы из интернет - энциклопедии

4) Путилов К.А. «Курс физики»,«Физматгиз», Москва, 1964г.

Еще в древние времена люди обнаружили уникальные свойства определенных камней - притягивание металла. В наше время мы часто сталкиваемся с предметами, которые обладают этими качествами. Что такое магнит? В чем его сила? Об этом мы расскажем в этой статье.

Примером временного магнита являются скрепки, кнопки, гвозди, нож и другие предметы обихода, изготовленные из железа. Их сила в том, что они притягиваются к постоянному магниту, а при исчезновении магнитного поля, теряют свое свойство.

Полем электромагнита можно управлять с помощью электрического тока. Как это происходит ? Провод, витками намотанный на железный сердечник, при подаче и изменении величины тока меняет силу магнитного поля и его полярность.

Типы постоянных магнитов

Ферритовые магниты являются самыми известными и активно используемыми в быту. Этот материал черного цвета может использоваться в качестве крепежей различных предметов, например, для плакатов, для настенных досок, используемых в офисе или школе. Они не теряют своих свойств притяжения при температуре не ниже 250 о С.

Альнико - магнит, состоящий из сплава алюминия, никеля и кобальта. Это дало ему такое название. Очень устойчив к высоким температурам и может применяться при 550 о С. Материал отличается легкостью, но полностью теряет свои свойства, попадая под действие более сильного магнитного поля. Используется в основном в научной отрасли.

Самариевые магнитные сплавы - это материал с высокими показателями. Надежность его свойств позволяет использовать материал в военных разработках. Он устойчив к агрессивной среде, высокой температуре, окислению и коррозии.

Что такое неодимовый магнит? Это самый популярный сплав железа, бора и неодима. Его еще называют супермагнитом, так как он имеет мощнейшее магнитное поле с высокой коэрцитивной силой. Соблюдая определенные условия во время эксплуатации, неодимовый магнит способен сохранить свои свойства на протяжении 100 лет.

Использование неодимовых магнитов

Стоит подробно рассмотреть, что такое неодимовый магнит? Это материал, который способен фиксировать потребление воды, электричества и газа в счетчиках, да и не только. Этот вид магнита относится к постоянным и редкоземельным материалам. Он устойчив перед полей других сплавов и не подвержен размагничиванию.

Изделия из неодима используют в медицинских и промышленных отраслях. Также в бытовых условиях их применяют для крепления портьер, элементов декора, сувениров. Они применяются в поисковых приборах и в электронике.

Для продления срока службы магниты такого типа покрывают цинком или никелем. В первом случае напыление более надежное, так как устойчиво к агрессивным средствам и выдерживает температуру выше 100 о С. Сила магнита зависит от его формы, размера и количества неодима, входящего в состав сплава.

Применение ферритовых магнитов

Ферриты считаются самыми популярными магнитами среди постоянных видов. Благодаря стронцию, входящему в состав, материал не поддается коррозии. Так что это такое - ферритовый магнит? Где он применяется? Этот сплав довольно хрупок. Поэтому его еще называют керамическим. Применяется ферритовый магнит в автомобилестроении и промышленности. Используется в различной технике и электроприборах, а также бытовых установках, генераторах, системах акустики. При производстве автомобилей магниты используют в системах охлаждения, стеклоподъемниках и вентиляторах.

Назначение феррита - защитить технику от внешних помех и не допустить порчи сигнала, получаемого по кабелю. Благодаря этому используют при производстве навигаторов, мониторов, принтеров и другого оборудования, где важно получить чистый сигнал или изображение.

Магнитотерапия

Нередко применяется процедура называется магнитотерапия и проводится в лечебных целях. Действие этого метода заключается в том, чтобы повлиять на организм пациента с помощью магнитных полей, находящихся под низкочастотным переменным или постоянным током. Этот метод лечения помогает избавиться от многих заболеваний, снять боли, укрепить иммунную систему, улучшить кровоток.

Считается, что болезни порождаются нарушением магнитного поля человека. Благодаря физиотерапии организм приходит в норму и общее состояние улучшается.

Из данной статьи вы узнали, что такое магнит, а также изучили его свойства и сферы применения.

Для начала нужно понять, что такое магнит вообще. Магнит - это природный энергетический материал, который имеет в себе неиссякаемое энергетическое поле и два полюса, которые называются северным и южным. Хотя в наше время человечество, конечно же, научилось создавать это необычное явление искусственно.

Силу двух полюсов магнита человек научился использовать практически везде. Современное общество повседневно пользуется вентилятором - в его двигателе стоят специальные магнитные щётки, абсолютно каждый день и до глубокой ночи смотрят телевизор, работают на компьютере, а в нём достаточно большое количество этих элементов. У каждого в доме на стене висят часы, всякие красивые маленькие игрушки на дверке холодильника, колонки на всём звуковом оборудовании работают исключительно благодаря этому чудесному магниту.

На промышленных предприятиях рабочие пользуются электродвигателями, сварочными аппаратами. В строительстве используется магнитный подъёмный кран, железо-отделительная лента. Встроенное в неё магнитное устройство помогает абсолютно отделить стружку и окалину от готовой продукции. Эти магнитные ленты также используются в пищевой промышленности.

Еще магнит применяется в ювелирных изделиях, а это браслеты, цепочки, всевозможные кулоны, кольца, серёжки, и даже заколки для волос.

Нужно понять, что без этого природного элемента наше существование станет намного сложнее. Во многих предметах и устройствах используются магниты – от детских игрушек до вполне серьезных вещей. Ведь не зря в электротехнике и физике есть специальный раздел – электричество и магнетизм. Эти две науки тесно связаны. Все предметы, где имеется этот элемент, сразу и не перечислишь.

В наше время всё больше появляются новых изобретений и во многих из них имеются магниты, особенно если это связано с электротехникой. Даже всемирно известный коллайдер работает исключительно при помощи электромагнитов.

Магнит также обширно используется в медицинских целях – например, для резонансного сканирования внутренних органов человека, а также и в хирургических целях. Он используется для всяческих магнитных поясов, массажных кресел и так далее. Целебные свойства магнита не придуманы – например, в Грузии на Черном море есть уникальный курорт Уреки, где песок не обычный – желтый, а черный – магнитный. Туда едут лечить многие заболевания, в особенности детские – ДЦП, нервные расстройства, и даже гипертонию.

Ещё магниты используются на перерабатывающих предприятиях. Например, старые автомобили сначала давят прессом, а потом грузят магнитным погрузчиком.

Также бывают так называемые неодимовые магниты. Они используются в различных сферах промышленности, где температура не выше 80°C. Эти магниты используют сейчас практически везде.

Магниты сейчас настолько тесно вошли в нашу жизнь, что без них наша жизнь станет очень сложной –примерно на уровне 18-19 веков. Если бы прямо сейчас все магниты исчезли, мы моментально лишились бы электричества – остались бы только такие его источники, как аккумуляторы и батарейки. Ведь в устройстве любого генератора тока важнейшая часть – именно магнит. И не думайте, что Ваш автомобиль заведется от аккумулятора – стартер ведь тоже представляет собой электрический двигатель, где самая важная часть – магнит. Да, можно жить и без магнитов, но жить при этом придется так, как жили наши предки лет 100 и более назад…


Благодаря появлению сплава на основе Nd -Fe -B (неодима, железа и бора) применение магнитов в промышленности было существенно расширено. Среди ключевых преимуществ этого редкоземельного магнита по сравнению с используемыми ранее SmCo и Fe-P особенно стоит отметить его доступность. Сочетая высокую силу сцепления с компактными размерами и длительным сроком службы, такие изделия стали востребованы в самых разных сферах хозяйственной деятельности.


Использование неодимовых магнитов в различных промышленных отраслях


Ограничения при использовании редкоземельных магнитов на основе неодима связаны с их слабостью к перегреву. Верхний показатель рабочей температуры для стандартных изделий составляет +80⁰C , а для модифицированных термостойких сплавов - +200⁰C . С учетом этой особенности применение неодимовых магнитов в промышленности охватывает следующие сферы:


1) Компьютерная техника. Значительная часть от общего объема магнитной продукции используются в производстве DVD -приводов и винчестеров для ПК. Пластина из неодимового сплава используется в конструкции головки чтения/записи. Неодимовый магнит – неотъемлемая часть динамиков в смартфонах и планшетах. Для защиты от размагничивания из-за воздействия внешних полей этот элемент закрывают с помощью специальных экранирующих материалов.


2) Медицина. Компактные и мощные постоянные магниты находят свое применение при изготовлении приборов для магнитно-резонансной томографии. Такие устройства оказываются значительно экономичнее и надежнее по сравнению с устройствами, в которых установлены электромагниты.


3) Строительство. На строительных площадках различного уровня используются практичные и удобные магнитные фиксаторы, которые успешно вытесняют сварные формы. С помощью магнитов подготавливают воду для замешивания цементного раствора. Благодаря особым свойствам омагниченной жидкости получаемый бетон быстрее застывает, обладая при этом повышенной прочностью.


4) Транспорт. Редкоземельные магниты незаменимы при производстве современных электродвигателей, роторов и турбин. Появление неодимового сплава обеспечило снижение стоимости оборудования при улучшении его эксплуатационных свойств. В частности, мощные и в то же время компактные постоянные магниты позволили уменьшить габариты электродвигателей, снизить силу трения и увеличить КПД.


5) Нефтепереработка. Магниты устанавливают на трубопроводные системы, что позволяет защитить их от образования осадка органических и неорганических отложений. Благодаря такому эффекту появилась возможность создать более экономичные и не вредящие окружающей среде системы с замкнутым технологическим циклом.


6) Сепараторы и железоотделители. На многих производственных предприятиях необходимо обеспечить отсутствие металлических примесей в жидких или сыпучих материалах. Неодимовые магниты позволяют с минимальными затратами и максимальной эффективностью справиться с этой задачей. Это позволяет не допустить попадания металлических загрязнений в готовую продукцию и защитить промышленное оборудование от поломок.

КОМПАС  Ко́ мпас - устройство, облегчающее ориентирование на местности. Предположительно, компас был изобретён в Китае. В Европе изобретение компаса относят к XII-XIII вв., однако устройство его оставалось очень простым - магнитная стрелка, укрепленная на пробке и опущенная в сосуд с водой. Принцип действия магнитного компаса основан на притяжении-отталкивании двух магнитов. Противоположные полюса магнитов притягиваются, одноименные - отталкиваются.

  • 3. ПРИМЕНЕНИЕ МАГНИТОВ ВНУТРИ ЖИЛИЩА
  • 4. ПРИМЕНЕНИЕ МАГНИТОВ ВНУТРИ ЖИЛИЩА  Наушники  Стереоколонки  Телефонная трубка  Электрозвонок  Держатель по периметру дверцы холодильника  Записывающие и воспроизводящие головки аудио- и видеоаппаратуры  Записывающие и воспроизводящие головки дисковода и жесткого диска компьютера  Магнитная полоска на банковской карте  Управляющие и размагничивающие магнитные системы в телевизоре  Вентиляторы  Трансформаторы  Магнитные замки  Игрушки  Магнитные носители информации
  • 5. МАГНИТНЫЕ НОСИТЕЛЬ ИНФОРМАЦИИ  · Жесткие диски ПК (винчестеры) · Видеокассеты (любых форматов, в том числе Betacam) · Аудиокассеты · Стримерные кассеты · Дискеты, ZIP-диски
  • 6. МАГНИТНЫЕ ЗАМКИ.  Магнитный замок – это особое запорное устройство, принцип работы которого базируется на магнитном взаимодействии. Магнитный замок может функционировать как с дополнительным питанием, так и без него. Магнитный замок, работающий без дополнительного питания - это упрощенная конструкция, обладающая меньшей рабочей силой. Подобные магнитные замки используются для закрывания дверей шкафов, на женских сумочках, одежде и пр. Магнитный замок, работающий под подачей электрического тока получил широкое распространение в качестве запирающего и отпирающего оборудования дверей в помещениях, с ограниченным доступом и контролем посещений. Основное техническое преимущество магнитного замка заключается в том, что конструкция не предусматривает наличия движущихся механизмов и деталей. Это является одним из факторов, обеспечивающих высокую надежность и долговечность работы. При всем при этом, магнитный замок не слишком трудоемок в монтаже и прост в эксплуатации. Замкам другого типа магнитный замок проигрывает только в одном – он абсолютно недееспособен при отсутствии электропитания.
  • 7. ИГРУШКИ 
  • 8. НАУШНИКИ  Наушники - устройство для персонального прослушивания музыки, речи или иных звуковых сигналов.
  • 9. КРЕДИТНЫЕ КАРТОЧКИ  Креди́ тная ка́рта (разг. креди́ тка) - банковская платёжная карта, предназначенная для совершения операций, расчёты по которым осуществляются исключительно за счёт денежных средств.
  • 10. ТЕЛЕФОННАЯ ТРУБКА
  • 11. СТЕРЕОКОЛОНКИ
  • 12. ЭЛЕКТРОЗВОНОК
  • 13. ДЕРЖАТЕЛЬ ПО ПЕРИМЕТРУ ДВЕРЦЫ ХОЛОДИЛЬНИКА
  • 14. ТРАНСФОРМАТОРЫ
  • 15. ВЕНТИЛЯТОРЫ
  • 16. УПРАВЛЯЮЩИЕ И РАЗМАГНИЧИВАЮЩИЕ МАГНИТНЫЕ СИСТЕМЫ В ТЕЛЕВИЗОРЕ
  • 17. СВЕРХВЫСОКО ЧАСТОТНЫЙ ДИАПАЗОН (СВЧ)  Сверхвысоко частотный диапазон (СВЧ) - частотный диапазон электромагнитного излучения (100ч300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Радиоволны СВЧ-диапазона широко применяются в технике связи. СВЧ- излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности.
  • 18. В МЕДИЦИНЕ  Кардиостимуляторы  Томографы  Тонометры
  • 19. КАРДИОСТИМУЛЯТОРЫ
  • 20. ТОМОГРАФЫ  Магни́ тно-резона́нсный томо́ граф (МРТ), ядерно магнитно-резонансный томограф (ЯМРТ) или магнитно-резонансная томография(МРТ), является основным инструментом медицинской техники для создания изображений, используемых в радиологии для подробной визуализации внутренних структур и органов человека. Томограф обеспечивает хороший контраст между различными мягкими тканями тела, что делает его особенно полезным при исследованиях мозга, мышц, сердца и диагностики рака по сравнению с другими медицинскими методами визуализации


  • THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама