THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

И клеткой-мишенью. У данного типа синапса роль посредника (медиатора) передачи выполняет химическое вещество.

Состоит из трёх основных частей: нервного окончания с пресинаптической мембраной , постсинаптической мембраны клетки-мишени и синаптической щели между ними.

Энциклопедичный YouTube

    1 / 3

    ✪ Межнейронные химические синапсы

    ✪ Нервная ткань. 5. Синапсы

    ✪ Neuronal synapses (chemical) | Human anatomy and physiology | Health & Medicine | Khan Academy

    Субтитры

    Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

Структура химического синапса

В синаптическом расширении имеются мелкие везикулы , так называемые пресинаптические или синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент , разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Одинаковый размер пресинаптических пузырьков во всех исследованных синапсах (40-50 нанометров) сначала считали доказательством того, что каждая везикула является минимальным кластером, чье освобождение требуется для производства синаптического сигнала. Везикулы размещаются напротив пресинаптической мембраны, что обусловлено их функциональным назначением для высвобождения медиатора в синаптическую щель. Также около пресинаптического пузырька имеется большое количество митохондрий (производящих аденозинтрифосфат) и упорядоченные структуры протеиновых волокон.

Синаптическая щель - это пространство между пресинаптической мембраной и постсинаптической мембраной от 20 до 30 нанометров шириной, которое содержит связующие пре- и постсинапс структуры, построенные из протеогликана . Ширина синаптической щели в каждом отдельном случае обусловлена тем, что извлеченный из пресинапса медиатор должен проходить к постсинапсу за время, являющееся значительно меньше частоты нервных сигналов, характерных для нейронов, образующих синапс (время прохождения медиатора от пре- к постсинаптической мембране - порядка нескольких микросекунд).

Постсинаптическая мембрана принадлежит клетке, которая принимает нервные импульсы. Механизмом трансляции химического сигнала медиатора в электрический потенциал действия на этой клетке являются рецепторы - белковые макромолекулы, встроенные в постсинаптическую мембрану.

С помощью специальных ультрамикроскопичекских методик в последние годы был получен достаточно большой объем информации о детальной структуре синапсов.

Так, на пресинаптической мембране была открыта упорядоченная струтура кратероподобных углублений диаметром 10 нанометров, вдавленных внутрь. Сначала их именовали синаптопорами, но сейчас эти структуры называют местами присоединения везикул (МПВ). МПВ собраны в упорядоченные группы численностью по шесть отдельных углублений вокруг так называемых уплотненных выступлений. Таким образом, уплотненные выступления формируют правильные треугольные структуры на внутренней стороне пресинаптической мембраны, а МПВ - гексагональные , и являются местами, где везикулы открываются и выбрасывают медиатор в синаптическую щель.

Механизм передачи нервного импульса

Поступление электрического импульса к пресинаптической мембране включает процесс синаптической передачи, первым этапом которой является вхождение ионов Са 2+ в пресинапс сквозь мембрану через специализированные кальциевые каналы, локализованные у синаптической щели. Ионы Са 2+ , с помощью неизвестного пока полностью механизма, активируют везикулы, скученные у своих мест присоединения, и те высвобождают медиатор в синаптическую щель. Вошедшие в нейрон ионы Са 2+ , после активации ими везикул с медиатором, деактивируются за время порядка нескольких микросекунд, благодаря депонированию в митохондриях и везикулах пресинапса.

Молекулы медиатора, высвобождаемые из пресинапса, связываются с рецепторами на постсинаптической мембране, в результате чего в рецепторных макромолекулах открываются ионные каналы (в случае канальных рецепторов, что является наиболее распространенным их типом; при работе рецепторов других типов механизм передачи сигнала отличается). Ионы, которые начинают поступать внутрь постсинаптической клетки через открытые каналы, изменяют заряд её мембраны, что является частичной поляризацией (в случае тормозного синапса) или деполяризацией (в случае возбуждающего синапса) этой мембраны и, как следствие, приводит к торможению или провоцированию генерации постсинаптической клеткой потенциала действия.

Квантово-везикулярная гипотеза

Распространенная до последнего времени в качестве объяснения механизма высвобождения медиатора из пресинапса, гипотеза квантово-везикулярного экзоцитоза (КВЭ) подразумевает, что «пакет», или квант, медиатора содержится в одной везикуле и высвобождается при экзоцитозе (при этом мембрана везикулы сливается с клеточной пресинаптической мембраной). Эта теория была долгое время превалирующей гипотезой - несмотря на то, что корреляция между уровнем высвобождения медиатора (или постсинаптическими потенциалами) и количеством везикул в пресинапсе отсутствует . Кроме того, гипотеза КВЭ имеет и другие существенные недостатки.

Физиологической основой именно квантованного высвобождения медиатора должно быть одинаковое количество этого медиатора в каждой везикуле. Гипотеза КВЭ в классическом виде не приспособлена к описанию эффектов квантов разного размера (или разного количества медиатора) которые могут быть высвобождены при одном акте экзоцитоза. При этом надо принять во внимание, что в одном и том же пресинаптическом бутоне могут наблюдаться везикулы разного размера; кроме того, не найдено корреляции между размером везикулы и количеством медиатора в ней (то есть его концентрация в везикулах тоже может быть разной). Более того, в денервированном нервно-мышечном синапсе шванновские клетки генерируют большее количество миниатюрных постсинаптических потенциалов, чем наблюдается в синапсе до денервации, несмотря на полное отсутствие в этих клетках пресинаптических везикул, локализованных в районе пресинаптического бутона .

Гипотеза пороцитоза

Существуют существенные экспериментальные подтверждения того, что медиатор секретируется в синаптическую щель благодаря синхронной активации гексагональных групп МПВ (см. выше) и присоединенных к ним везикул , что стало основой для формулирования гипотезы пороцитоза (англ. porocytosis ). Эта гипотеза базируется на наблюдении, что присоединенные к МПВ везикулы, при получении потенциала действия , синхронно сокращаются и при этом секретируют в синаптическую щель каждый раз одинаковое количество медиатора, высвобождая только часть содержимого каждой из шести везикул. Сам по себе термин «пороцитоз» происходит от греческих слов poro (что означает поры) и cytosis (описывает перенос химических субстанций через плазматическую мембрану клетки).

Большинство экспериментальных данных о функционировании моносинаптических межклеточных соединений получены благодаря исследованиям изолированных нервно-мышечных контактов. Как и в межнейронных, в нервно-мышечных синапсах МПВ формируют упорядоченные гексагональные структуры . Каждая из таких гексагональных структур может быть определена как «синаптомер» - то есть структура, которая является элементарной единицей в процессе секреции медиатора. Синаптомер содержит, кроме собственно поровых углублений, протеиновые нитчатые структуры, содержащие линейно упорядоченные везикулы; существование аналогичных структур доказано и для синапсов в центральной нервной системе (ЦНС).

Как было сказано выше, пороцитозный механизм генерирует квант нейромедиатора , но без того, чтобы мембрана индивидуальной везикулы полностью сливалась с пресинаптической мембраной. Малый коэффициент вариации (менее 3 %) у величин постсинаптических потенциалов является индикатором того, что в единичном синапсе имеются не более 200 синаптомеров , каждый из которых секретирует один квант медиатора в ответ на один потенциал действия . 200 участков высвобождения (то есть синаптомеров, которые высвобождают медиатор), найденные на небольшом мышечном волокне, позволяют рассчитать максимальный квантовый лимит, равный одной области высвобождения на микрометр длины синаптического контакта , это наблюдение исключает возможность существования квантов медиатора, обеспечивающих передачу нервного сигнала, в объеме одной везикулы.

Сравнение гипотез пороцитоза и квантово-везикулярной

Сравнение недавно общепринятой гипотезы КВЭ с гипотезой пороцитоза может быть осуществлено посредством сравнения теоретического коэффициента вариации с опытным, рассчитанным для амплитуд постсинаптических электрических потенциалов, генерируемых в ответ на каждый отдельный выброс медиатора из пресинапса. Если принять, что процесс экзоцитоза проходит в небольшом синапсе, где содержится около 5 000 везикул (50 на каждый микрон длины синапса), постсинаптические потенциалы должны быть сгенерированы 50-ю случайно выбранными везикулами, что даёт теоретический коэффициент вариации 14 %. Эта величина примерно в 5 раз больше, чем коэффициент вариации постсинаптических потенциалов, получаемых в опытах, таким образом, можно утверждать, что процесс экзоцитоза в синапсе не является случайным (не совпадает с распределением Пуассона) - что невозможно, если объяснять его в рамках гипотезы КВЭ, но вполне соответствует гипотезе пороцитоза. Дело в том, что гипотеза пороцитоза предполагает, что все связанные с пресинаптической мембраной везикулы выбрасывают медиатор одновременно; при этом постоянное количество медиатора, выбрасываемого в синаптическую щель в ответ на каждый потенциал действия (об устойчивости свидетельствует малый коэффициент вариации постсинаптических ответов) вполне может быть объяснено высвобождением малого объема медиатора большим количеством везикул - при этом, чем больше везикул, участвующих в процессе, тем меньше становится коэффициент корреляции , хотя это и выглядит с точки зрения математической статистики несколько парадоксально.

Классификация

По медиатору

  • аминергические, содержащие биогенные амины (например, серотонин, дофамин);
    • в том числе адренергические, содержащие адреналин или норадреналин;
  • холинергические, содержащие ацетилхолин;
  • пуринергические, содержащие пурины;
  • пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия

  • возбуждающие
  • тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке, то вторые, наопротив, прекращают или предотвращают его появление. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

По их местоположению и принадлежности структурам

  • периферические
    • нервно-мышечные
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические - с дендритами, в том числе аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
    • аксо-соматические - с телами нейронов;
    • аксо-аксональные - между аксонами;
    • дендро-дендритические - между дендритами;

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Структура синапса

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель - промежуток шириной 10-50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.



Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные рецепторы.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификации синапсов

В зависимости от механизма передачи нервного импульса различают

  • химические;
  • электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм)

Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

  • смешанные синапсы: Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы.

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

  • периферические
    • нервно-мышечные
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические - с дендритами, в т. ч.
      • аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
    • аксо-соматические - с телами нейронов;
    • аксо-аксональные - между аксонами;
    • дендро-дендритические - между дендритами;

В зависимости от медиатора синапсы разделяются на

  • аминергические, содержащие биогенные амины (например, серотонин, дофамин;)
    • в том числе адренергические, содержащие адреналин или норадреналин;
  • холинергические, содержащие ацетилхолин;
  • пуринергические, содержащие пурины;
  • пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия:

  • возбуждающие
  • тормозные .

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов: 1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала; 2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение. Синапс холинергический (s. cholinergica) - синапс, медиатором в котором является ацетилхолин.

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные . Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы .

К специальным формам синапсов относятся шипиковые аппараты , в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Механизм функционирования химического синапса

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза. Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии.

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run ), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность составляет около - 0,5 мс.

Так называемый «принцип Дейла» (один нейрон - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

История открытия

  • В 1897 году Шеррингтон сформулировал представление о синапсах.
  • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль.
  • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
  • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие роли норадреналина в синаптической передаче.

1.Понятие синапса.

2.Структура синапса.

3.Классификации синапсов.

4.Механизм функционирования химического синапса.

5.История открытия синапса.

Казанский (Приволжский) Федеральный Университет

Институт механики и математики

по возрастной анатомии

Выполнила:

студентка І курса, гр.1101

Валитова Юлия.

Проверила:

Русинова С.И.

Российский государственный химико-технологический университет

им. Д. И. Менделеева

Задание №22.1:

Синапсы, строение, классификация.

Физиологические особенности проведения возбуждения в синапсах.

Выполнил: студент гр. О-36

Щербаков Владимир Евгеньевич

Москва - 2004

Синапс – это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку (мышечное волокно, секреторную клетку).

Классификация синапсов

Все синапсы ЦНС можно классифицировать следующим образом.

    По локализации: центральные (головной и спинной мозг) и периферические (нервномышечный, нейросекреторный синапс вегетативной нервной системы). Центральные синапсы можно в свою очередь разделить на аксо-аксональные, аксо-дендритические (дендритные), аксо-соматические, аксо-шипиковый синапс. (Большинство возбуждающих синапсов локализуется в выростах дендритов, содержащих большое количество актина и называемых шипиками), дендро-дендритические, дендро-соматические и т. п. СогласноГ. Шеперду, различают реципрокные синапсы, последовательные синапсы и синаптические гломерулы (различным способом соединенные через синапсы клетки).

    По развитию в онтогенезе: стабильные (например, синапсы дуг безусловного рефлекса) и динамичные, появляющиеся в процессе индивидуального развития.

    По конечному эффекту: тормозные и возбуждающие.

    По механизму передачи сигнала : электрические, химические, смешанные.

    Химические синапсы можно классифицировать:

а)по форме контакта – терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона);

б)по природе медиатора – холинергические (медиатор – ацетилхолин, АХ), адренергические (медиатор – норадреналин, НА), дофаминергические (дофамин), ГАМК-ергические (медиатор – гамма-аминомасляная кислота), глицинергические, глутаматергические, аспартатергические, пептидергические (медиатор – пептиды, например, вещество Р), пуринергические (медиатор – АТФ).

Электрические синапсы. Вопрос о них во многом не ясен. Многие авторы недостаточно четко дифференцируют понятия «электрический синапс» и «нексусы» (в гладких мышцах, в миокарде). В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т. е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Строение химического синапса (схема на рис.1-А)

По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом – медиатором. В синапсе различают иресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсинаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм. В литературе существует большое разнообразие в названиях синапсов. Например, синаптическая бляшка – это синапс между нейронами, концевая пластинка – это постсинаптическая мембрана мионеврального синапса, моторная бляшка – это пресинаптическое окончание аксона на мышечном волокне.

Пресинаптическая часть

Пресинаптическая часть – специализированная часть терминали отростка нейрона, где расположены синаптические пузырьки и митохондрии. Пресинаптическая мембрана (плазмолемма) содержит потенциалозависимые Са 2+ -каналы. При деполяризации мембраны каналы открываются, и ионы Са 2+ входят в терминаль, запуская в активных зонах экзоцитоз нейромедиатора.

Синаптические пузьрьки содержат нейромедиатор. Ацетилхолин, аспартат и глутамат находятся в круглых светлых пузырьках; ГАМК, глицин – в овальных; адреналин и нейропептиды – в мелких и крупных гранулярных пузырьках. Слияние синаптических пузырьков с пресинаптической мембраной происходит при увеличении концентрации Са 2+ в цитозоле нервной терминали. Предшествую­щий слиянию синаптических пузырьков и плазмолеммы процесс узнавания синаптическим пузырьком пресинаптической мембраны происходит при взаимодействии мембранных белков семейства SNARE (синаптобревин, SNAP-25 и синтаксин).

Активные зоны. В пресинаптической мембране выявлены так называемые активные зоны – участки утолщения мембраны, в которых происходит экзоцитоз. Активные зоны расположены против скоплений рецепторов в постсинаптической мембране, что уменьшает задержку в передаче сигнала, связан­ную с диффузией нейромедиатора в синаптической щели.

Постсинаптическая часть

Постсинаптическая мембрана содержит рецепторы нейромедиатора, ионные каналы.

Физиологические особенности проведения возбуждения в синапсах

Синаптическая передача – сложный каскад событий. Многие неврологические и психические заболевания сопровождаются нарушением синаптической передачи. Различные лекарственные препараты влияют на синаптическую передачу, вызывая нежелательный эффект (например, галлюциногены) или, наоборот, корригируя патологический процесс (например, психофармаколо­гические средства [антипсихотические препараты]).

Механизм. Синаптическая передача возможна при реализации ряда последовательных процессов: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора из нервной терминали, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану; разрушение нейромедиатора или захват его нервной терминалью. (схема на рис. 1.)

Синтез нейромедиатора. Ферменты, необходимые для образования нейроме-диаторов, синтезируются в перикарионе и транспортируются к синаптической терминали по аксонам, где взаимодействуют с молекулярными предшественниками нейромедиаторов.

Хранение нейромедиатора. Нейромедиатор накапливается в нервной терминали, находясь внутри синаптических пузырьков вместе с АТФ и некоторыми катионами. В пузырьке находится несколько тысяч молекул нейромедиатора, что составляет квант.

Квант нейромедиатора. Величина кванта не зависит от импульсной активности, а определяется количеством поступившего в нейрон предшественника и активностью ферментов, участвующих в синтезе нейромедиатора.

Рис. 1. Механизм химической передачи импульсов в нервном синапсе; от А до Д – последовательные этапы поцесса.

Секреция нейромедиатора. Когда потенциал действия достигает нервной тер­минали, в цитозоле резко повышается концентрация Са 2+ , синаптические пузырьки сливаются с пресинаптической мембраной, что приводит к выделению квантов нейромедиатора в синаптическую щель. Незначительное количество нейромедиатора постоянно (спонтанно) секретируется в синаптическую щель.

Взаимодействие нейромедиатора с рецептором. После выброса в синаптическую щель молекулы нейромедиатора диффундируют в синаптической щели и достигают своих рецепторов в постсинаптической мембране.

Удаление нейромедиатора из синаптической щели происходит за счёт диффузии, расщепления ферментом и выведения путём захвата специфическим пе­реносчиком. Кратковременность взаимодействия нейромедиатора с рецептором достигается разрушением нейромедиатора специальными ферментами (например, ацетилхолина – ацетилхолинэстеразой). В большинстве синапсов передача сигналов прекращается вследствие быстрого захвата нейромедиатора пресинаптической терминалью.

Свойства химических синапсов

Односторонняя проводимость – одно из важнейших свойств химического синапса. Асимметрия – морфологическая и функциональная – является предпосылкой для существования односторонней проводимости.

    Наличие синаптической задержки: для того, чтобы в ответ на генерацию ПД в области пресинапса выделился медиатор и произошло изменение постсинаптического потенциала (ВПСП или ТПСП), требуется определенное время (синаптическая задержка). В среднем оно равно 0,2–0,5 мс. Это очень короткий промежуток времени, но когда речь идет о рефлекторных дугах (нейронных сетях), состоящих из множества нейронов и синаптических связей, это латентное время суммируется и превращается в ощутимую величину – 300 – 500 мс. В ситуациях, встречающихся на автомобильных дорогах, это время оборачивается трагедией для водителя или пешехода.

    Благодаря синаптическому процессу нервная клетка, управляющая данным постсинаптическим элементом (эффектором), может оказывать возбуждающее воздействие или, наоборот, тормозное (это определяется конкретным синапсом).

    В синапсах существует явление отрицательной обратной связи – антидромный эффект, Речь идет о том, что выделяемый в синаптическую щель медиатор может регулировать выделение следующей порции медиатора из этого же пресинаптического элемента путем воздействия на специфические рецепторы пресинаптической мембраны. Так, известно, что в адренергических синапсах имеются альфа 2 -адренорецепторы, взаимодействие с которыми (норадреналин связывается с ними) приводит к снижению выделения порции норадреналина при поступлении очередного сигнала к синапсу. На пресинаптической мембране обнаруживаются рецепторы и к другим веществам.

    Эффективность передачи в синапсе зависит от интервала следования сигналов через синапс. Если этот интервал до некоторых пор уменьшать (учащать подачу импульса по аксону), то на каждый последующий ПД ответ постсинаптической мембраны (величина ВПСП или ТПСП) будет возрастать (до некоторого предела). Это явление облегчает передачу в синапсе, усиливает ответ постсинаптического элемента (объекта управления) на очередной раздражитель; оно получило название «облегчение» или «потенциация». В основе его лежит накопление кальция внутри пресинапса. Если частота следования сигнала через синапс очень большая, то из-за того, что медиатор не успевает разрушиться или удалиться из синаптической щели, возникает стойкая деполяризация или католическая депрессия – снижение эффективности синаптической передачи. Это явление называется депрессией. Если через синапс проходит много импульсов, то в конечном итоге постсинаптичеркая мембрана может уменьшить ответ на выделение очередной порции медиатора. Это называется явлением десенситизации – утратой чувствительности. В определенной мере десенситизация похожа на процесс рефрактерности (утрата возбудимости). Синапсы подвержены процессу утомления. Возможно, что в основе утомления (временного падения функциональных возможностей синапса) лежат: а) истощение запасов медиатора, б) затруднение выделения медиатора, в) явление десенситизации. Т. о., утомление – это интегральный показатель.

Литература:

1. Агаджанян Н.А., Гель Л.З., Циркин В. И., Чеснокова С.А. ФИЗИОЛОГИЯ

ЧЕЛОВЕКА. - М.: Медицинская книга, Н. Новгород: Издательство НГМА,

2003, глава 3.

2. Грин Н., Стаут У., Тейлор Д. Биология в 3-х томах. Т.2:Пер. англ./Под ред. Р. Сопера. – 2-е изд., стереотипное – М.:Мир, 1996, стр. 254 – 256

3. Гистология

Химические синапсы - это преобладающий тип синапсов в мозге млекопитающих. В таких синапсах взаимодействие между нейронами осуществляется с помощью медиатора (нейротрансмиттера) - вещества, выделяющегося из пресинаптического окончания и действующего на постсинаптическую структуру.

Химические синапсы - это самый сложный вид соединений в ЦНС (рис. 3.1). Морфологически он отличается от других форм соединений наличием хорошо выраженной синаптической щели, при этом виде контакта мембраны строго ориентированы или поляризованы в направлении от нейрона к нейрону.

Химический синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки, и постсинаптической, представленной контактирующим участком плазматической мембраны воспринимающей клетки. Между обеими частями имеется синаптическая щель - промежуток шириной 10-50 нм между постсинаптической и пресинап- тической мембранами, края которой укреплены межклеточными контактами. В синаптическом расширении имеются мелкие везикулы, так называемые пресинаптические или синаптические пузырьки , содержащие медиатор (вещество-посредник в передаче возбуждения) либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Рис. 3.1.

Пузырьки (везикулы) размещаются напротив пресинаптической мембраны, что обусловлено их функциональным назначением для высвобождения медиатора в синаптическую щель. Также около пресинаптического пузырька находится большое количество митохондрий (производящих АТФ) и упорядоченные структуры протеиновых волокон. Везикулы имеют различные размеры (от 20 до 150 и более нм) и заполнены химическими веществами, способствующими передаче активности с одной клетки на другую. Одна аксонная терминаль нейрона может содержать несколько типов везикул.

Как правило, из всех окончаний одного нейрона выделяется один и тот же медиатор (правило Дейла). Этот медиатор может подействовать на разные клетки по-разному, в зависимости от их функционального состояния, химизма или степени поляризованности их мембраны. Однако, подчиняясь правилу Дейла, эта пресинаптическая клетка из всех своих аксонных окончаний всегда будет выделять одно и то же химическое вещество. Пузырьки группируются возле уплотненных частей мембраны.

Нервный импульс (возбуждение) с огромной скоростью продвигается по волокну и подходит к синапсу. Этот потенциал действия вызывает деполяризацию мембраны синапса, однако это не приводит к генерации нового возбуждения (потенциала действия), а вызывает открывание специальных ионных каналов. Эти каналы пропускают ионы кальция внутрь синапса. Специальная железа внутренней секреции - паращитовидная (она находится поверх щитовидной) - регулирует содержание кальция в организме. Многие заболевания связаны с нарушением обмена кальция в организме. Например, его недостаток приводит к рахиту у маленьких детей.

Попадая в цитоплазму синаптического окончания, кальций входит в связь с белками, образующими оболочку пузырьков, в которых хранится медиатор. Мембраны синаптических пузырьков сокращаются, выталкивая содержимое в синаптическую щель. Возбуждение (электрический потенциал действия) нейрона в синапсе превращается из электрического импульса в импульс химический. Другими словами, каждое возбуждение нейрона сопровождается выбросом в окончании его аксона порции биологически активного вещества - медиатора. Далее молекулы медиатора связываются с рецепторами (белковыми молекулами), которые находятся на постсинаптической мембране.

Рецептор состоит из двух частей. Одну можно назвать «узнающим центром», другую - «ионным каналом». Если молекулы медиатора заняли определенные места (узнающий центр) на молекуле рецептора, то ионный канал открывается и ионы начинают входить в клетку (ионы натрия) или выходить из клетки (ионы калия).

Т. е. через мембрану протекает ионный ток, который вызывает изменение потенциала на мембране. Этот потенциал получил название возбуждающего постсинаптического потенциала (рис. 3.2).

Рис. 3.2.

Рис. 3.3.

ВПСП - это основной синаптический процесс, обеспечивающий передачу возбуждающих влияний одной клетки на другую. ВПСП отличается от распространяющегося импульса отсутствием рефрактерности, значительной длительностью, способностью суммироваться с другими аналогичными синаптическими процессами, отсутствием способности к активному распространению (рис. 3.3).

Амплитуда потенциала определяется количеством молекул медиатора, связанного рецепторами. Благодаря этой зависимости амплитуда потенциала на мембране нейрона развивается пропорционально количеству открытых каналов.

Мышечную и железистую клетку передается посредством специального структурного образования — синапса.

Синапс — структура, обеспечивающая проведение сигнала от одной к другой. Термин был введен английским физиологом Ч. Шеррингтоном в 1897 г.

Строение синапса

Синапсы состоят из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 1).

Рис. 1. Строение синапса: 1 — микротрубочки; 2 — митохондрии; 3 — синаптические пузырьки с медиатором; 4 — пресинаптическая мембрана; 5 — постсинаптическая мембрана; 6 — рецепторы; 7 -синаптическая щель

Некоторые элементы синапсов могут иметь и другие названия. Например, синаптическая бляшка — это синапс между , концевая пластинка — постсинаптическая мембрана , моторная бляшка — пресинаптическое окончание аксона на мышечном волокне.

Пресинаптическая мембрана покрывает расширенное нервное окончание, которое представляет собой нейросекреторный аппарат. В пресинаптической части находятся пузырьки и митохондрии, обеспечивающие синтез медиатора. Медиаторы депонируются в гранулах (пузырьках).

Постсинаптическая мембрана - утолщенная часть мембраны клетки, с которой контактирует пресинаптическая мембрана. Она имеет ионные каналы и способна к генерации потенциала действия. Кроме того, на ней расположены специальные белковые структуры — рецепторы, воспринимающие действие медиаторов.

Синаптическая щель представляет собой пространство между пресинаптической и постсинаптической мембранами, заполненное жидкостью, близкой по составу к .

Рис. Строение синапса и процессы, осуществляемые в ходе синаптической передачи сигнала

Виды синапсов

Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.

По месту положения выделяют нервно-мышечные синапсы, нервно-железистые и нейро-нейрональные; последние, в свою очередь, делятся на аксо-аксональные, аксо-дендритические, аксо-соматические, дендро-соматические, дендро-дендротические.

По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.

По способу передачи сигнала синапсы делятся на электрические, химические, смешанные.

Таблица 1. Классификация и виды синапсов

Классификация синапсов и механизм передачи возбуждения

Синапсы классифицируют следующим образом:

  • по местоположению — периферические и центральные;
  • по характеру их действия — возбуждающие и тормозящие;
  • по способу передачи сигналов — химические, электрические, смешанные;
  • по медиатору, с помощью которого осуществляется передача, — холинергические, адренергические, серотонинергические и т.д.

В возбуждение передается с помощью медиаторов (посредников).

Медиаторы — молекулы химических веществ, которые обеспечивают передачу возбуждения в синапсах. Другими словами химические вещества, участвующие в передаче возбуждения или торможения от одной возбудимой клетки к другой.

Свойства медиаторов

  • Синтезируются в нейроне
  • Накапливаются в окончании клетки
  • Выделяются при появлении иона Са2+ в пресинаптическом окончании
  • Оказывают специфическое действие на постсинаптическую мембрану

По химическому строению медиаторы можно подразделить на амины (норадреналин, дофамин, серотонин), аминокислоты (глицин, гамма-аминомасляная кислота) и полипептиды (эндорфины, энкефалины). Ацетилхолин известен в основном как возбуждающий медиатор и содержится в различных отделах ЦНС. Медиатор находится в пузырьках пресинаптического утолщения (синаптической бляшки). Медиатор синтезируется в клетках нейрона и может ресинтезироваться из метаболитов его расщепления в синаптической щели.

При возбуждении терминалей аксона происходит деполяризация мембраны синаптической бляшки, вызывающая поступление ионов кальция из внеклеточной среды внутрь нервного окончания через кальциевые каналы. Ионы кальция стимулируют перемещение синаптических пузырьков к пресинаптической мембране, их слияние с ней и последующий выход медиатора в синаптическую щель. После проникновения в щель медиатор диффундирует к постсинаптической мембране, содержащей на своей поверхности рецепторы. Взаимодействие медиатора с рецепторами вызывает открытие натриевых каналов, что способствует деполяризации постсинаптической мембраны и возникновению возбуждающего постсинаптического потенциала. В нервно-мышечном синапсе этот потенциал называется потенциалом концевой пластинки. Между деполяризованной постсинаптической мембраной и соседними с ней поляризованными участками этой же мембраны возникают местные токи, которые деполяризуют мембрану до критического уровня с последующей генерацией потенциала действия. Потенциал действия распространяется по всем мембранам, например, мышечного волокна и вызывает его сокращение.

Выделившийся в синаптическую щель медиатор связывается с рецепторами постсинаптической мембраны и подвергается расщеплению соответствующим ферментом. Так, холинэстераза разрушает медиатор ацетилхолин. После этого некоторое количество продуктов расщепления медиатора поступает в синаптическую бляшку, где из них снова ресинтезируется ацетилхолин.

В организме имеются не только возбуждающие, но и тормозные синапсы. По механизму передачи возбуждения они сходны с синапсами возбуждающего действия. В тормозных синапсах медиатор (например, гамма-аминомасляная кислота) связывается с рецепторами постсинаптической мембраны и способствует открытию в ней . При этом активизируется проникновение этих ионов внутрь клетки и развивается гиперполяризация постсинаптической мембраны, обусловливающая возникновение тормозного постсинаптического потенциала.

В настоящее время выяснено, что один медиатор может связываться с несколькими различными рецепторами и индуцировать различные реакции.

Химические синапсы

Физиологические свойства химических синапсов

Синапсы с химической передачей возбуждения обладают определенными свойствами:

  • возбуждение проводится в одном направлении, так как медиатор выделяется только из синаптической бляшки и взаимодействует с рецепторами на постсинаптической мембраны;
  • распространение возбуждения через синапсы происходит медленнее, чем по нервному волокну (синаптическая задержка);
  • передача возбуждения осуществляется с помощью специфических медиаторов;
  • в синапсах изменяется ритм возбуждения;
  • синапсы способны утомляться;
  • синапсы обладают высокой чувствительностью к различным химическим веществам и гипоксии.

Одностороннее проведение сигнала. Сигнал передается только от пресинаптической мембраны к постсинаптической. Это вытекает из особенностей строения и свойств синаптических структур.

Замедленная передача сигнала. Обусловлена синаптической задержкой в передаче сигнала с одной клетки на другую. Задержка вызывается временными затратами на процессы выброса медиатора, его диффузии к постсинаптической мембране, связывания с рецепторами постсинаптической мембраны, деполяризации и преобразования постсинаптического потенциала в ПД (потенциал действия). Длительность синаптической задержки колеблется от 0,5 до 2 мс.

Способность к суммации эффекта от приходящих к синапсу сигналов. Такая суммация проявляется, если последующий сигнал приходит к синапсу через короткое время (1- 10 мс) после предыдущего. В таких случаях амплитуда ВПСП возрастает и на постсинаптическом нейроне может генерироваться большая частота ПД.

Трансформация ритма возбуждении. Частота нервных импульсов, приходящих к пресинаптической мембране, обычно не соответствует частоте ПД, генерируемых постсинаптическим нейроном. Исключение составляют синапсы, передающие возбуждение с нервного волокна на скелетную мышцу.

Низкая лабильность и высокая утомляемость синапсов. Синапсы могут проводить 50-100 нервных импульсов в секунду. Это в 5-10 раз меньше, чем максимальная частота ПД, которую могут воспроизводить нервные волокна при их электростимуляции. Если нервные волокна считаются практически неутомляемыми, то в синапсах утомление развивается весьма быстро. Это происходит из-за истощения запасов медиатора, энергетических ресурсов, развития стойкой деполяризации постсинаптической мембраны и т.д.

Высокая чувствительность синапсов к действию биологически активных веществ, лекарственных препаратов и ядов. Например, яд стрихнин блокирует функцию тормозных синапсов ЦНС, связываясь с рецепторами, чувствительными к медиатору глицину. Столбнячный токсин блокирует тормозные синапсы, нарушая выделение медиатора из пресинаптической терминали. В обоих случаях развиваются опасные для жизни организма явления. Примеры действия биологически активных веществ и ядов на передачу сигналов в нервно-мышечных синапсах рассмотрены выше.

Свойства облегчения и депрессии синоптической передачи. Облегчение синаптической передачи имеет место, когда нервные импульсы поступают к синапсу через короткое время (10-50 мс) друг за другом, т.е. достаточно часто. При этом в течение некоторого промежутка времени каждый последующий ПД, приходящий к пресинаптической мембране, вызывает увеличение содержания медиатора в синаптической щели, возрастание амплитуды ВПСП и увеличение эффективности синаптической передачи.

Одним из механизмов облегчения является накопление ионов Са 2 в пресинаптической терминали. Для удаления кальциевым насосом порции кальция, вошедшей в синаптическую терминаль при поступлении ПД, необходимо несколько десятков миллисекунд. Если в это время приходит новый потенциал действия, то новая порция кальция входит в терминаль и ее эффект на высвобождение нейромедиатора складывается с остаточным количеством кальция, которое кальциевый насос не успел удалить из нейроплазмы терминали.

Имеются и другие механизмы развития облегчения. Этот феномен в классических руководствах по физиологии называют также посттетанической потенциацией. Облегчение синаптической передачи имеет значение в функционировании механизмов памяти, для образования условных рефлексов и обучения. Облегчение передачи сигналов лежит в основе развития пластичности синапсов и улучшения их функций при частой активации.

Депрессия (угнетение) передачи сигналов в синапсах развивается при поступлении очень частых (для нервно-мышечного синапса более 100 Гц) нервных импульсов к пресинаптической мембране. В механизмах развития явления депрессии имеют значение истощение запасов медиатора в пресинаптической терминали, снижение чувствительности рецепторов постсинаптической мембраны к медиатору, развитие стойкой деполяризации постсинаптической мембраны, затрудняющих генерацию ПД на мембране постсинаптической клетки.

Электрические синапсы

Кроме синапсов с химической передачей возбуждения в организме есть синапсы с электрической передачей. Эти синапсы имеют очень узкую синаптическую щель и пониженное электрическое сопротивление между двумя мембранами. Благодаря наличию поперечных каналов между мембранами и низкому сопротивлению, электрический импульс легко проходит через мембраны. Электрические синапсы обычно характерны для однотипных клеток.

В результате воздействия раздражителя пресинаптический потенциал действия раздражает постсинаптическую мембрану, где возникает распространяющийся потенциал действия.

Характеризуются большей скоростью проведения возбуждения по сравнению с химическими синапсами и низкой чувствительностью к воздействию химических веществ.

Электрические синапсы бывают с одно- и двусторонней передачей возбуждения.

В организме встречаются и электрические тормозные синапсы. Тормозное влияние развивается за счет действия тока, который вызывает гиперполяризацию постсинаптической мембраны.

В смешанных синапсах может происходить передача возбуждения с помощью как электрических импульсов, так и медиаторов.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама