THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Лекция

Генетика пола.

Хромосомный механизм определения пола

Одной из важных проблем в биологии всегда была загадка рождения организмов разного пола. Сотни гипотез о природе этого явления были опубликованы в трудах прошлых веков и особенно в XIX в. Однако только хромосомная теория позволила понять внутренний механизм определения пола и причину того, почему в природе в большинстве случаев рождается половина особей мужского и половина – женского пола. Хромосомный механизм наследования пола был открыт в лаборатории Т. Моргана Э. Вильсоном в 1914 г. при изучении кариотипа мушки дрозофилы. Он доказал, что из 4 пар хромосом самца и самки 3 пары были идентичны по строению. Четвертая пара отличалась. У самки обе хромосомные пары были одинаковые – субметацентрические. У самца хромосомы были разные: одна гомологичная хромосоме самки – субметацентрическая, другая маленькая – акроцентрическая. Субметацентрическую хромосому обозначили как Х, а акроцентрическую – У. Таким образом, кариотипы самки и самца различны, и это различие по одной паре хромосом, которые назвали половыми . Хромосомы, по которым мужской и женский пол не отличаются, назвали аутосомами.

Таким образом, в генотипе дрозофилы всего 8 хромосом: 6 аутосом и 2 половые. У самки хромосомный набор – 6А+ХХ, у самца – 6А+ХУ. У женской особи образуется один тип гамет – все половые клетки содержат – 3А+Х. В данном случае такой пол называют гомогаметным. Мужской пол образует два типа гамет 3А+Х – 50% и 3А+У – 50%. Такой пол называют гетерогаметным.

Типы хромосомного определения пола

    Самки имеют две ХХ хромосомы (гомогаметный пол), а самцы имеют одну Х-хромосому и непарную ей У – хромосому (гетерогаметный пол). Такой тип определения пола у млекопитающих, двукрылых, жуков.

    Мужской пол гетерогаметен – 50% гамет несут ген Х, 50% -- не имеют половой хромосомы. Кариотип самки 2А+ХХ, кариотип самца – 2А+ХО. Описан у большинства прямокрылых насекомых, многоножек, жуков, пауков, нематод.

    Женский пол гетерогаметен – 50% гамет несут ген Х, 50% гамет – несут ген У. В этом случае, для обозначения половых хромосом используют другие буквы: женский пол – ZW , мужской пол – ZZ . Такой тип определения пола характерен для птиц, бабочек, хвостатых амфибий.

    У моли женский пол гетерогаметен, 50% гамет несут ген – Х, а 50% -- не имеют половой хромосомы.

    Особый тип определения пола характерен для пчел. Здесь разница между полами затрагивает не одну пару хромосом, а весь набор. Самки пчел диплоидны, самцы гаплоидны. Самки развиваются из оплодотворенных яйцеклеток, самцы в результате партеногенеза.

Определение пола у разных организмов может происходить на разной стадии жизненного цикла.

    Пол организма может определяться еще в период созревания женских половых клеток – яйцеклеток. Такое определение пола называется прогамным , т.е. оно происходит до оплодотворения. Прогамное определение пола обнаружено у коловраток, кольчатых червей. Яйцеклетки у этих организмов в результате неравномерного распределения цитоплазмы в процессе оогенеза различаются по размерам. Из мелких клеток после оплодотворения развиваются самцы, из крупных – только самки.

    Наиболее распространенным типом определения пола является определение его в момент оплодотворения. Это сингамное определение пола. Встречается у млекопитающих, птиц, рыб и т.д.

    Пол может определяться на ранних этапах индивидуального развития особи. Это эпигамный тип определения пола. Например, у морского червя Bonelia viridis . Свободноплавающие личинки этого червя развиваются в самок. Если личинка остается прикрепленной к материнской особи, то из нее развивается самец. Начавшую развиваться в самца личинку отделить от самки, то изменяется направление дифференциации пола в женскую особь, и из нее развивается интерсекс – имеет признаки самца и самки.

Один из примеров полного переопределения пола описан в 1953 г. японским ученым Т. Ямамото. Опыт проводился на белых и красных медиках, у которых доминантный ген красной окраски находится в Y – хромосоме. В таком случае самцы будут всегда красными, самки белыми. Фенотипически красных самцов кормили с добавлением в корм женского полового гормона. В результате оказалось, что все красные рыбки с генотипом самца являются самками с нормальными яичниками и женскими вторичными половыми признаками.

Переопределение пола может быть следствием мутаций определенных генов, участвующих в дифференциации пола. Так, у дрозофилы в одной из аутосом обнаружен рецессивный ген tra , присутствие которого в гомозиготном состоянии обуславливает развитие женских зигот (ХХ) в фенотипических самцов, оказывающихся стерильными. Самцы XY , гомозиготные по этому гену, являются плодовитыми. Аналогичные гены обнаружены у растений. Например, у кукурузы рецессивная мутация silkless в гомозиготном состоянии вызывает стерильность семяпочек, в связи, с чем обоеполое растение функционирует как мужское. У сорго обнаружено два доминантных гена, комплементарное взаимодействие которых также вызывает женскую стерильность.

Наследование признаков сцепленных с полом

Генетические исследования показали, что половые хромосомы отвечают не только за определение пола организма, они как и аутосомы, содержат гены, контролирующие развитие определенных признаков.

Наследование признаков, гены которых локализованы в Х - или Y - хромосомах, называется наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган. У дрозофилы красный цвет глаз доминирует над белым. 1) При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказалось красноглазым.

Р: ж. красноглазые Х м. белоглазые

2) Если скрестить между собой гибридов первого поколения, то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление – 50% белоглазых и 50% красноглазых.

Р: ж. красноглазые Х м. красноглазые

F : ж. красноглазые, 50% м. красноглазые, 50% м. белоглазые

3) Если скрестить белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. Во втором поколении половина самок и самцов – красноглазые, половина – белоглазые.

Р: ж. белоглазые Х м. красноглазые

F : ж. красноглазые, м. белоглазые

Какие можно сделать выводы?

Ген, отвечающий за окраску глаз у дрозофилы, локализован в Х-хромосоме, а Y - хромосома таких генов не содержит. Самки получают одну Х-хромосому от отца, другую от матери, а самцы Х-хромосому получают только от матери, а Y -хромосому от отца. Х и Y хромосомы не являются гомологичными. Гены, находящиеся на Х-хромосоме отсутствует на Y - хромосоме. Так у человека на Х- хромосоме находится 200 генов не связанных с развитием пола: гемофилия, цветная слепота, мышечная дистрофия, др. Если гены, отвечающие за развитие данных признаков, окажутся у представителя мужского пола, то они проявятся фенотипически, так как представлены в генотипе в единичном варианте. Такие гены получили название гемизиготных. Если гены локализованы в Y – хромосоме и не имеют аллелей в Х-хромосоме, то признаки, обусловленные ими, передаются от отца к сыну. Такое наследование является голандрическим . К голандрическим относят следующие признаки: гипертрихоз, перепонки между пальцами ног.

Признаки, ограниченные полом

Признаки, проявление которых различно у представителей разных полов, или проявляющиеся только у одного пола, относятся к признакам, ограниченным полом. Эти признаки могут определяться генами, расположенными как в аутосомах, так и в половых хромосомах. Возможность развития признака зависит от пола организма. Например, тембр голоса баритон или бас характерны только для мужчин. Проявление генов, ограниченных полом, связано с реализацией генотипа в условиях среды целостного организма. Помимо генов, отвечающих за развитие вторичных половых признаков, которые в норме работают только у одного из полов, у другого они присутствуют, но молчат. Функциональная активность других генов определяется гормональной активностью организма. Например, у быков есть гены, контролирующие продукцию молока и его качественные особенности (жирность, содержание белка), но у быков они молчат, а функционируют только у коров. Потенциальная способность быка давать высокомолочное потомство делает его ценным производителем молочного стада.

Признаки, зависимые от пола

Существуют признаки, зависимые от пола. Гены, степень проявления которых определяется уровнем половых гормонов, называются генами, зависимыми от пола. Эти гены могут находиться не только в половых хромосомах, но и в любых аутосомах. Например, ген определяющий облысение, типичное для мужчин, локализован в аутосоме и его проявление зависит от мужских половых гормонов. У мужчин этот ген действует как доминантный, а у женщин как рецессивный. Если у женщин этот ген в гетерозиготном состоянии, то признак не проявляется. Даже в гомозиготном состоянии у женщин этот признак выражен слабее, чем у мужчин.

Длинные сегменты генов, которые содержат наследственную информацию. Они состоят из ДНК и белков, расположенных в наших клеток. Хромосомы определяют все, от цвета волос и цвета глаз до пола. Являетесь ли вы мужчиной или женщиной, зависит от наличия или отсутствия определенных хромосом. Человеческие содержат 23 пары или в общей сложности 46 хромосом.

Есть 22 пары аутосом (неполовые хромосомы) и одна пара гоносом (половых хромосом). Половыми хромосомами являются Х и Y хромосомы.

Половые клетки

При половом размножении человека сливаются два отдельных гамета и образовывается зигота. - это , продуцируемые типом клеточного деления, называемого . Они содержат только один набор хромосом и называются .

Мужская гамета, называемая сперматозоидом, относительно подвижна и обычно имеет . Женская гамета, называемая яйцеклеткой, является неподвижной и относительно большая в сравнении с мужской гаметой. Когда гаплоидные мужские и женские гаметы объединяются в процессе, называемом оплодотворением, они развиваются в зиготу. Зигота , а это означает, что она содержит два набора хромосом.

Половые хромосомы XY

Мужские гаметы или сперматозоиды у людей и других млекопитающих являются гетерогаметическими и содержат один из двух типов половых хромосом.

Клетки спермы переносят хромосомы X или Y. Однако женские гаметы или яйцеклетки содержат только Х-хромосому и являются гомогаметическими. В этом случае клетка спермы определяет пол индивидуума. Если сперматозоидная клетка, содержащая Х-хромосому, оплодотворяет яйцеклетку, результирующая зигота будет XX - женский пол. Если клетка спермы содержит Y-хромосому, тогда результирующая зигота будет XY - мужской пол.

Y-хромосомы несут необходимые для развития мужских или яичек. Особи, у которых отсутствует Y-хромосома (XO или XX), развивают женские гонады или яичники. Для развития полностью функционирующих яичников необходимы две Х-хромосомы.

Гены, расположенные на Х-хромосоме, называются Х-сцепленные генами, и они определяют Х-сцепленное рецессивное наследование. Мутация, происходящая в одном из этих генов, может привести к развитию измененных черт. Поскольку самцы имеют только одну Х-хромосому, измененная черта всегда будет выражаться у самцов. У самок признак будет выражен не всегда, так как у них есть две Х-хромосомы. Измененная черта может быть замаскирована, если только одна Х-хромосома имеет мутацию, и черта является рецессивной.

Половые хромосомы XX

Кузнечики, тараканы и другие насекомые имеют сходную с человеком систему определения пола. Взрослым самцам не хватает Y-половой хромосомы и имеют только Х-хромосому. Они производят клетки спермы, которые содержат хромосому Х или хромосому без пола, которая обозначается как О. Самки имеют XX и производят яйцеклетки, содержащие Х-хромосому.

Если клетка спермы X оплодотворяет яйцеклетку, результирующая зигота будет XX - женский пол. Если клетка спермы, не содержащая половой хромосомы, оплодотворяет яйцеклетку, результирующая зигота будет XO - мужской пол.

Половые хромосомы ZW

Птицы, насекомые, такие как бабочки, лягушки, змеи и некоторые виды рыб, имеют разную систему определения пола. У этих животных именно женская гамета определяет пол. Женские гаметы могут содержать либо хромосому Z, либо хромосому W. Мужские гаметы содержат только Z-хромосому. У этих видов сочетание хромосом ZW означает женский пол, а ZZ - мужской пол.

Партеногенез

Как насчет таких животных, как большинство видов ос, пчел и муравьев, у которых нет половых хромосом? Как определяется пол? У этих видов пол определяет . Если яйцо будет оплодотворено, то из него появится самка. Из неоплодотворенного яйца может появится самец. Самка диплоидна и содержит два набора хромосом, а гаплоидный самец содержит лишь один набор хромосом. Такое развитие самца из неоплодотворенного яйца и самки из оплодотворенного яйца является типом партеногенеза, известного как арренотокный партеногенез.

Экологическое определение пола

У черепах и крокодилов пол определяется температурой окружающей среды в определенный период развития оплодотворенного яйца. Яйца, которые инкубируются выше определенной температуры, развиваются в один пол, а яйца, инкубированные ниже определенной температуры, развиваются в другой пол.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Тема: Генетика пола.

1. Механизм хромосомного определения пола.

2. Патология по половым хромосомам.

3. Наследование признаков, сцепленных с полом.


Половое размножение свойственно как растениям, так и животным и обусловлено формированием гамет - мужских и женских гаплоидных клеток, которые, соединяясь в процессе оплодотворения, дают начало диплоидным клеткам - зиготам. При скрещивании в результате процесса расщепления и комбинации генов в потомстве возможно выявление новых приспособительных сочетаний признаков. За счет полового размножения под контролем естественного отбора в наследственном фонде вида накапливаются сочетания генов, способствующие выживанию вида в данных условиях.

У диплоидных организмов наследственно обусловлена способность к формированию признаков и свойств как женского, так и мужского пола, но одна из этих тенденций преобладает, в то время как другая подавляется и проявляется только при условиях, исключающих возможность проявления основной тенденции. Так, у старых самок жаб после отмирания женских половых желез начинается вторичное развитие зачаточных мужских половых желез и самки приобретают способность функционировать в качестве самцов, но потомство, возникающее от скрещивания их с нормальными самками, состоит только из самок. В этом случае выявление подавленной мужской половой тенденции происходит после разрушения женских половых желез, сформировавшихся под влиянием основной половой тенденции.

Пол организма зависит от взаимодействия наследственной основы, полученной им от родителей, с условиями внешней среды, в которой происходит его развитие. Определение пола осуществляется у разных живых организмов на различных ступенях индивидуального развития.

1. Механизм хромосомного определения пола. Определение пола может происходить на разных фазах цикла размножения. Пол зиготы может предопределяться еще в процессе созревания женских гамет - яйцеклеток. Такое определение пола называют програмным. Оно обнаружено у коловраток, или у первичных кольчецов. Яйцеклетки этих животных в результате неравномерного распределения цитоплазмы в процессе оогенеза становятся различными по размеру еще до оплодотворения. Например, в яйцевой капсуле первичных кольчецов содержатся два сорта яиц - крупные и мелкие. Из крупных после оплодотворения развиваются только самки, из мелких - только самцы!

Если определение пола нового организма обеспечивается при оплодотворении в результате соответствующего сочетания гамет, то есть при образовании зиготы, то такой тип детерминации пола называют сингамным . Сингамное определение пола типично для млекопитающих, птиц, рыб, двукрылых насекомых, двудомных растений.

Позднее цитологи, изучая мейоз у некоторых насекомых, обнаружили явление неравного распределения хромосом. Так, у самцов клопа наблюдали в одних сперматоцитах второго порядка семь хромосом, а в других - шесть, следовательно, одна хромосома оказалась непарной. Непарную хромосому назвали Х -хромосомой, а все остальные хромосомы в клетке - аутосомами. В соматических клетках самца клопа насчитывается 13 хромосом, одна из которых является Х -хромосомой. В соматических клетках самок клопа насчитывается 14 хромосом, из которых две Х -хромосомы (такие же, как у самца) и 12 аутосом. Все ооциты у самок этого вида имеют 7 хромосом. Таким образом, у клопа все яйцеклетки имеют Х +6 аутосом, а сперматозоиды оказываются двух сортов, одна часть имеет набор хромосом Х + 6, а другая 0 + 6.

Впоследствии были обнаружены организмы, у которых в сперматогониях одна из пар хромосом представлена неодинаковыми по размеру или форме хромосомами. Одна такая хромосома была сходна с парными хромосомами женского пола, за ней сохранилось название «Х -хромосома», другая - иной формы или размера - была названа Y -хромосомой. Например, в соматических клетках коровы содержатся 60 хромосом, из которых 58 являются аутосомами и две - половыми Х -хромосомами. Соматические клетки быка также содержат 60 хромо­сом, среди которых 58 аутосом и одна пара половых хромосом: Х и Y .

Таким образом, у особей женского пола многих видов животных все хромосомы парные, и в гаметогенезе в результате редукционного деления у них образуется только один сорт гамет; в гаметогенезе у мужского пола образуются два сорта гамет - либо X и 0, либо X и Y - при равном числе остальных хромосом - аутосом. Соотношение различных сортов мужских гамет в обоих случаях будет равно 1:1, так как это определяется мейозом.

Пол, образующий гаметы одного сорта по половым хромосомам (X и X ), назвали гомогаметным ; образующий два сорта гамет (X и 0 или X и Y ), - гетерогаметным .

В случае, когда яйцеклетки содержат, кроме аутосом, Х -хромосому, при соединении со спермием, несущим также Х -хромосому, образуется зигота с парными хромосомами XX , то есть женского пола. Если же такая яйцеклетка соединится со спермием, несущим Y -хромосому, то образуется зигота с набором половых хромосом XY , то есть мужского пола.

Исследования показали, что гетерогаметность по мужскому полу присуща млекопитающим, рыбам, двукрылым насекомым, а также двудомным растениям. В то же время у бабочек, птиц, рептилий гетерогаметным полом является женский, а гомогаметным - мужской.

Балансовая теория определения пола. Исследования на дрозофиле показали, что простой на первый взгляд механизм определения пола в действительности сложнее. Несомненно, что Х -хромосома направляет развитие особи в сторону женского пола, однако Y -хромосома у плодовой мушки никак не влияет на пол. Например, можно получить особей типа Х0 , то есть имеющих одну лишь Х -хромосому, но лишенных Y -хромосомы. Такие особи представляют собой типичных самцов, но они совершенно стерильны. Следовательно, наличие Y –хромосомы обеспечивает плодовитость самцов, но не влияет на определение пола как таковое; в данном случае роль Y -хромосомы сводится к тому, что она служит партнером Х -хромосомы в мейозе.

О том, что Y -хромосома не оказывает никакого влияния на развитие пола у дрозофил, свидетельствует следующий факт. Можно получить мух с набором половых хромосом ХХ Y ; такие мухи будут настоящими плодовитыми самками, несмотря на наличие Y -хромосомы. Было установлено, что пол определяется генами женского пола, расположенными в Х -хромосоме, и генами мужского пола, расположенными в аутосомах.

В 1919 г. К. Бриджес нашел триплоидных самок дрозофил, которые были плодовиты. От скрещивания триплоидных мух с нормальными получается весьма разнообразное потомство, среди которого могут быть мухи с нормальным комплексом хромосом (XY +2A и ХХ +2 A ) и могут встретиться особи с комплексом хромосом ЗХ +2 A или 2Х + З A . Особей, имеющих комплекс хромосом ЗХ +2A , называют сверхсамками; они отличаются от нормальных самок стерильностью и аномальными крыльями и глазами. Мухи типа 2Х A представляют собой интерсексов , то есть нечто промежуточное между самцами и самками. Могут возникнуть также особи с комплексом хромосом Х Y A ; их называют сверхсамцами .

На основании опытов Бриджес пришел к выводу, что пол определяет не присутствие двух Х -хромосом или Х Y , а соотношение числа половых хромосом и числа наборов аутосом. Это следует из того, что все особи с балансом хромосом (или половым индексом) Х : A = 1 представляют собой самок, соотношение Х :2A = 0,5 определяет самцов; баланс хромосом в соотношении от 1 до 0,5 определяет промежуточное развитие пола, то есть интерсексуальность. Соотношение ЗХ :2A = 1,5 ведет к развитию сверхсамок. Напротив, увеличение количества наборов аутосом на одну Х -хромосому Х + Y A =0,33 определяет развитие сверхсамцов. В табл. 1 показаны различные половые типы дрозофил и соответствующие им половые индексы.

У дрозофилы и у некоторых других насекомых иногда развиваются так называемые гинандроморфы, у которых одни участки тела женского, а другие - мужского типов (рис. 22). Иногда одна сторона тела особи несет мужские признаки, а другая - женские. Причины такой мозаичности легко объяснить. В начале своего развития животное обладает двумя Х -хромосомами и начинает развиваться как самка, однако при первом дроблении оплодотворенного яйца по тем или иным причинам происходит утрата одной из Х -хромосом. В результате образуются клетки, содержащие только одну Х -хромосому. Если эти клетки продолжают делиться, то формируются ткани, характеризующиеся чисто мужскими признаками. Из клеток же, содержащих обе Х -хромосомы, развиваются ткани, обладающие женскими признаками.

У всех насекомых, принадлежащих к отряду перепончатокрылых (к которому принадлежит и медоносная пчела), пол определяется иным путем. В этой группе, а также у некоторых других насекомых самки диплоидны, тогда как самцы первично гаплоидны. Иными словами, самцы имеют вдвое Меньше хромосом, чем самки. Хромосомный комплекс самок нормальный, то есть у них имеется по паре хромосом каждого типа, однако гаплоидность присуща лишь клеткам так называемого зародышевого пути - клеткам, из которых развиваются гаметы. Во всех других частях тела самцов, например в кишечнике, мышцах и сосудистой системе, число хромосом вторично удваивается, становясь диплоидным. В результате самцы имеют нормальные размеры тела и жизнеспособны. У самцов в мейозе не происходит редукции числа хромосом, и поэтому половые клетки самцов имеют такое же число хромосом, как и клетки зародышевого пути. Поскольку клетки зародышевого пути уже несут половинный набор хромосом, вторичная редукция была бы просто излишней. У самок, напротив, мейоз протекает нормально, то есть сопровождается редукцией хромосом. Первичная гаплоидность самцов связана с тем, что они развиваются из неоплодотворенных яиц, которые содержат половинное число хромосом. У других организмов такие яйца обычно неспособны к развитию, но у перепончатокрылых развитие неоплодотворенных яиц представляет собой, как это ни удивительно, обычное явление.

У медоносной пчелы известны самки двух типов: многочисленные стерильные рабочие пчелы и одна плодовитая пчелиная матка. Различия между рабочими пчелами и матками обусловлены кормлением во время их роста. Непосредственная причина стерильности рабочих пчел заключается, по-видимому, в отсутствии некоторых витаминов Рабочие пчелы, как и матки, диплоидны. Те и другие содержат в своих соматических клетках по 32 хромосомы.

Самцы - трутни - развиваются из неоплодотворенных яиц, и их клетки вначале содержат 16 хромосом. Неоплодотворенные яйца откладываются в специальные ячейки сот, которые крупнее тех ячеек, где воспитываются рабочие пчелы. При спаривании матки с трутнем сперма попадает в специальный семяприемник, где она и хранится. Таким образом, пчелиная матка обладает фантастической способностью: откладывая яйца, пропускать часть их через резервуар с семенем так, что они остаются неоплодотворенными, а в других случаях обеспечивать оплодотворение яиц. В большие ячейки сот, приготовленные для трутней, матка безошибочно откладывает только неоплодотворенные яйца. Оплодотворенные же яйца, из которых должны развиваться рабочие пчелы или, возможно, новая матка.

2. Патология по половым хромосомам. У ряда животных различных видов обнаружена патология по половым хромосомам, часто аналогичная таковой у человека. Основной причиной таких аномалий является нерасхождение половых хромосом в процессе митоза дробящейся зиготы и нерасхождение половых хромосом в бластомеры на ранних этапах развития особи. Нерасхождение половых хромосом при мейозе и митозе сопровождается появлением в фенотипе особей аномалий, затрагивающих морфологические и физиологические системы. Существенно снижается или полностью утрачивается воспроизводительная функция, нарушается общее развитие, проявляется патология нервной и гормональной систем, меняется габитус тела.

Если речь идет о двух Х -хромосомах самки млекопитающих, то в результате нерасхождения возникают женские гаметы, одна из которых имеет две X -хромосомы, а вторая ни одной, тогда как в норме каждая из них должна нести по одной Х -xpoмосоме и обладать одинаковой возможностью определения пола. Если обозначить эти гаметы через XX и 0 , то в результате их соединения с нормальными мужскими гаметами (половина которых несет Х -, а другая половина Y -хромосому) возникнут анеуплоидные зиготы, как это и представлено на рис. 24. Возникающие в данном случае четыре типа зигот и количество хромосом в них представляют собой четыре типа аномалий. При рассмотренных аномалиях число аутосом не отклоняется от нормы.

Синдром Тернера (ХО ) наблюдается у женских особей. Эта аномалия описана у домашней мыши и козы. Синдром Клайнфельтера (XXY ) наблюдается у мужских особей.


Такой тип половых хромосом описан у собак, котов с черепаховой окраской шерсти, свиней. Во всех случаях особи, обладающие этим синдромом, имели ряд физиологических и анатомических аномалий и были бесплодны.

Зиготы типа Y О не были обнаружены. Возможно, что такие зиготы нежизнеспособны.

Особи с набором XXX - самки, внешне почти ничем не отличаются от нормальных, и некоторые из них даже плодовиты.

В первое время при исследовании интерсексов и гермафродитов серьезные трудности возникли при определении генетического пола аномальных особей. Не зная, была ли зигота первоначально мужской или женской, трудно было установить, какие отклонения от нормы произошли в ней в процессе развития. Эта проблема была разрешена М. Барром, который начал свои исследования в 1949 г. и в дальнейшем установил, что нормальные соматические клетки мужских и женских особей характеризуются наличием или отсутствием в них небольшого хроматинового тельца, обнаруживаемого при слабом окрашивании. Эти включения получили название полового хроматина, телец Барра или ядерного хроматина. Обычно для анализа используют клетки препаратов, приготовленных из мазков слизистой оболочки рта.

Поиски полового хроматина у интерсексов показали, что у особей, страдающих синдромом Тернера (ХО), как и у нормальных мужских особей, он отсутствует. Страдающие синдромом Клайнфельтера (ХХУ), имеют, как у нормальных женских особей, одно тельце Барра, а у тех редких индивидов, у которых встречаются три или четыре Х-хромосомы, число телец Барра всегда на единицу меньше числа Х-хромосом. В соответствии с этим у нормальных мужских особей не должно быть телец Барра, а нормальные женские особи должны иметь одно такое тельце. Если наблюдается какое-либо отклонение от этого правила, то оно указывает на некое нарушение численности Х-хромосом, и число телец Барра дает нам ключ к выяснению природы подобного отклонения.

Тельца Барра образуются из Х-хромосомы в результате ее инактивации на стадии гаструляции. Хроматин этих хромосом неадекватен, поэтому присутствие в женском организме двух Х-хромосом не удваивает дозу гена, а соответствует генетической дозе одной Х-хромосомы, так как другая Х-хромосома инактивирована. Таким образом, все лишние Х-хромосомы инактивируются на ранней стадии развития и каждая из них превращается в хроматиновое тельце.

Проблема регулирования пола. Регулирование пола имеет важное практическое значение. Так, в яичном птицеводстве желательно получать больше курочек, а в мясном птицеводстве - петушков. У тутового шелкопряда самцы дают на 25-30% больше шелка, чем самки, поэтому их преимущество очевидно. В мясном скотоводстве желательно получать больше бычков и т. д.

В результате исследований установлено, что типичное для многих видов соотношение полов 1:1 нарушается под влиянием различных факторов, действующих на разных этапах онтогенеза особи.

Известно, что в благоприятных для размножения тли условиях божьи коровки откладывают, как правило, яйца с набором хромосом женского типа (XX ). Благодаря этому быстро увеличивается поголовье самок божьих коровок, а затем резко возрастает численность популяции. Когда большое количество тли уничтожено, соотношение самцов и самок божьих коровок вновь становится близким 1:1.

Исследования Г. В. Паршутина, В. И. Михайлова и др. (1967) показали, что избыток аминокислот в рационе кур приводит к существенному изменению в соотношении полов. Установлено, что метионин и глицин содействуют формированию курочек, а аспарагин - петушков.

Длительное время с животными разных видов проводят опыты, цель которых - получить особей желательного пола. Разработано несколько методов направленного регулирования соотношения полов. Один из них состоит в изменении рН среды женских половых путей, что может способствовать преимущественному участию в оплодотворении яйцеклетки спермиев, несущих ту или иную половую хромосому. Другой метод основан на разделении спермы на две фракции путем электрофореза. Предполагают, что при этом спермин с разными половыми хромосомами отойдут к разным полюсам. Впервые такой опыт был проведен на кроликах В. Н. Шредер (1943). Оказалось, что при температуре среды, в которой проводился электрофорез, 25ºС в случае использования для осеменения животных спермы, накопившейся на аноде, получали в приплоде 75% самцов и 25% самок, а при использовании спермы, собравшейся на катоде,-20% самцов и 80% самок. При снижении температуры до 10°С результаты были обратными: осеменяя крольчих «анодной» спермой, получали 17% самцов и 83% самок, а при использовании «катодной» - 83% самцов и 17% самок. Однако следует отметить, что многократное повторение этих опытов не дало стабильных и ожидаемых результатов.

Иную методику для направленного регулирования соотношения полов применял в опытах с тутовым шелкопрядом В. Л. Астауров. Он подвергал бабочку тутового шелкопряда воздействию высокой температуры и рентгеновских лучей, что приводило к партеногенетическому размножению шелкопряда, при котором можно было получать только самцов (андрогенез) или только самок (гиногенез). Увеличение числа коконов самцов имеет практическое значение, так как выход шелковой нити из них больше, чем из коконов самок. Подвергая самку шелкопряда воздействию высокой температуры в период мейоза, задерживали редукционное деление ооцитов, в результате чего формирующиеся яйцеклетки самки становились не гаплоидными как это должно быть при нормальных условиях, а диплоидными. Диплоидные яйцеклетки не требуют оплодотворения, поэтому яйца, отложенные самкой, подвергнутой температурной обработке, развивались партеногенетически и из всех яиц образовывались только самки.

Для получения самцов самок шелкопряда подвергали действию рентгеновских лучей, что приводило к разрушению ядер яйцеклеток. Облученных самок спаривали с нормальными самцами, в их безъядерные яйца проникало несколько спермиев, привнося в зиготу свои Х-хромосомы. В результате зигота имела две Х -хромосомы, и в этом случае развивались только самцы с ХХ -половыми хромосомами, типичными для мужского пола бабочек.

В дальнейшем В. А. Струнниковым и Л. М. Гуламовой в СССР и В. Тадзимой в Японии была разработана методика разделения яиц (грены) тутового шелкопряда по полу. Схема наследования сцепленных с полом признаков окраски яиц у шелкопряда приведена на рис. 25.

На соотношение полов у потомства оказывает влияние возраст спариваемых особей, так как он обусловливает определенные физиологические изменения в организме родителей и в их гаметах. Так, при спаривании одновозрастных хряков и свиноматок было получено следующее количество особей женского пола (%):

от животных в возрасте до года -45,7;

двухлетних - 50,8;

трехлетних - 50,4;

четырехлетних - 49,2;

пятилетних- 37,5

и от шестилетних и старше - 41,1.

Следовательно, с возрастом родителей заметно снижается рождение самок, их было мало получено и от годовалых животных. При спаривании кур шестимесячного возраста выход самок был низким (27- 33%), в потомстве же десятимесячных родителей он составил 47,5%, а двенадцатимесячных - 49,7%.

Таким образом, установлено, что на соотношение полов при рождении млекопитающих и птицы оказывают влияние разнообразные факторы: возрастной подбор родительских пар, качество половых клеток самцов и самок, физиологическое состояние родителей, уровень их основного обмена и характер рациона.

Из этого видно, что пол животного обусловлен не только генетически, поэтому при создании соответствующих условий, обеспечивающих благоприятное формирование гамет, зигот и зародышей, появляется возможность изменять численность рождения особей того или иного пола в желательном для практики животноводства направлении. Однако эта проблема еще требует тщательной разработки.

3. Наследование признаков, сцепленных с полом. Половые хромосомы, так же как и аутосомы, несут в себе гены, контролирующие те или иные признаки. Признаки, которые обусловлены генами, расположенными в половых хромосомах, называют сцепленными с полом.

При изучении менделевских закономерностей наследования признаков подчеркивалось, что направление скрещивания, то есть то, от какого пола привносятся доминантные или рецессивные признаки, не имеет значения для расщепления по данным признакам в потомстве гибрида. Это правильно для всех случаев, когда гены находятся в аутосомах, одинаково представленных у обоих полов.

В том же случае, когда гены находятся в половых хромосомах характер наследования и расщепления обусловлен поведением половых хромосом в мейозе и их сочетанием при оплодотворении. В процессе исследований установлено, что У -хромосома гетерогаметного пола в отличие от Х -хромосомы почти не содержит генов, то есть наследственно инертна, поэтому гены, находящиеся в Х -хромосоме, за некоторым исключением, не имеют своих аллельных партнеров в У -хромосоме. Следовательно, признаки, гены которых находятся в половых хромосомах, должны наследоваться своеобразно: их распределение должно соответствовать поведению половых хромосом в мейозе. В силу этого рецессивные гены в Х -хромосоме гетерогаметного пола могут проявляться, так как им не противостоят доминантные аллели в У -хромосоме.

Явление сцепленного с полом наследования было впервые открыто Т. Морганом в опытах на дрозофиле.

У плодовой мушки нормальный цвет глаз темно-красный но встречаются и белоглазые формы. Гены, определяющие красный или белый цвет глаз, локализованы в Х-хромосоме и, следовательно, сцеплены с полом. Красный цвет глаз (А) доминирует над белым (а). При скрещивании гомозиготной красноглазой самки с белоглазым самцом (X A X A XX a Y ) все потомство оказывается красноглазым. В F 2 происходит расщепление в соотношении 3 красноглазых к 1 белоглазой, но при этом оказывается, что белоглазыми бывают только самцы (рис. 26).

В случае реципрокного скрещивания, когда самка, гомозиготная по гену белых глаз, скрещивается с красноглазым самцом (X a X a xX A Y ), расщепление наблюдается в первом же поколении в соотношении белоглазых к красноглазым 1: 1 (рис. 27). При этом белоглазыми оказываются только самцы, а все самки - красноглазыми. В F 2 появляются мухи с обоими признаками в соотношении 1: 1 как среди самок, так и среди самцов.

Описанный тип наследования окраски глаз у дрозофилы оказался закономерным для всех организмов в отношении признаков, которые определяются генами, находящимися в Х -хромосомах. Половые хромосомы гомогаметного материнского организма передаются как сыновьям, так и дочерям, а единственная Х -хромосома гетерогаметного мужского пола - дочерям, следовательно, при определенном направлении скрещивания признаки, определяемые генами, находящимися в Х - хромосоме, наследуются крест-накрест, то есть от матери к сыновьям, а от отца к дочерям.

Рассмотрим, как осуществляется наследование признаков, сцепленных с полом, в том случае, когда гетерогаметным полом является женский. Так, например, у кур самки несут XY , а самцы - ХХ -хромосомы. Если верна теория сцепленного с полом наследования, то, очевидно, в этом случае все гены Х -хромосомы будут находиться в гемизиготном состоянии не у самцов, а у самок.


На рис. 28 приведена схема наследования поперечнополосатой окраски у кур. Здесь отмечается сходная, но обратная в смысле признаков родителей особенность: если носителем рецессивного признака была самка, а доминирующего - самец, то во втором поколении все самцы приобретают поперечнополосатый рисунок оперения; среди же самок происходит расщепление на поперечнополосатых и черных в соотношении 1:1. Если доминирующий признак был у матери, а рецессивный - у Отца, то во втором поколении расщепление по окраске пера 1 . 1 наблюдается среди самок и самцов.

С полом сцеплена рецессивная золотистая окраска кур породы род-айланд (X S X S у петухов и X S Y у курочек). При скрещивании петухов род-айланд с курами породы Суссекс, несущими доминантный ген S, как и в опытах на дрозофиле и курах породы плимутрок, происходит передача признака пигментации от матери к сыну и от отца к дочери, то есть все петушки будут серебристыми, а курочки - с золотистыми перьями.

Сцепленное с полом наследование обнаружено и у других видов животных. Так, у собак обнаружено заболевание гемофилией. Явление гемофилии заключается в утрате кровью нормальной способности к свертыванию. Симптомы гемофилии обычно проявляются впервые у щенят в возрасте от шести недель до трех месяцев. В число обычных симптомов входят: хромота (вследствие кровоизлияний в суставы), сильная подкожная


припухлость и в конечном итоге паралич одной или нескольких конечностей. Небольшие царапины могут оказаться для щенят-гемофиликов смертельными.

Гемофилия у собак обусловлена, как и у человека, сцепленным с Х -хромосомой рецессивным геном. Щенята-гемофилики редко доживают до половой зрелости, поэтому обычно гемофилики рождаются от скрещивания гетерозиготной самки с нормальным самцом. Если обозначить ген, обусловливающий гемофилию, буквой h , а его доминантный аллель - Н , то поведение этих генов и выщепление гемофиликов, наблюдаемое при таком типе скрещивания, можно понять из схемы, представленной на рис. 29.

Из схемы видно, что в пометах от самок, являющихся носителями гемофилии, половина самцов нормальны, а половина - гемофилики (h ), но действие его не проявляется, так как у них имеется еще доминантный аллель Н. У остальных сестер ген h отсутствует.

У свиней обнаружен факт сцепленного с полом доминантного признака «вывороченные конечности» с полулетальным действием.

Передача через половые хромосомы признаков, сцепленных с Х- и У -хромосомами, указывает на то, что на особь мужского пола большее влияние оказывает наследственность матери и ее предков, передавших Х-хромосому, которая является носителем генов для ряда признаков. Наследственность же отца, передавшего сыну У -хромосому, генетически малоактивна.

От признаков, сцепленных с полом, следует отличать признаки, ограниченные полом, которые развиваются только у особей одного пола, например молочная продуктивность коров, яйценоскость кур и т.д. Гены подобных признаков могут быть локализованы в любой паре хромосом, самцы и самки в одинаковой степени передают их как дочерям, так и сыновьям,

В практике животноводства ограниченные полом признаки могут подвергаться селекции как по линии самцов, так и через самок. Например, повышение молочности, многоплодия, яйценоскости осуществляется путем селекции обоих родителей, хотя эти признаки проявляются в фенотипе только одного из них.

Контрольные вопросы:

1. Опишите механизмы определения пола.

2. В чем различия между половыми хромосомами и аутосомами?

3. Каков состав хромосом у самок-интерсексов плодовой мушки и как возникают подобные особи?

4. Назовите причину фримартинизма.

5. Как вы понимаете бисексуальность организмов?

6. Каковы причины возникновения патологии по половым хромосомам?

7. Приведите примеры регуляции, пола.

8. Приведите примеры практического использования сцепленного с полом наследования,

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, - аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, - половые хромосомы. У человека «женскими» половыми хромосомами являются две Х -хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х -хромосом. Пол, у которого образуются гаметы одного типа, несущие Х -хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека - Х -хромосома и Y -хромосома. При образовании гамет половина сперматозоидов получает Х -хромосому, другая половина - Y -хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол - гетерогаметный. Если образуется зигота, несущая две Х -хромосомы, то из нее будет формироваться женский организм, если Х -хромосому и Y -хромосому - мужской.

Характеристика половых хромосом

первые годы XX в. некоторые гистологи, изучая число хромосом у разных видов животных, обнаружили, что у некоторых видов имеется два типа сперматозоидов с разным числом хромосом. В 1902 г. американский биолог К.Мак-Кланг впервые высказал гипотезу, что пол организма может определяться его хромосомным набором. Эта гипотеза была развита и проверена американским цитологом Вильсоном. В работах 1905-1906 гг. он показал, что у самцов и самок может быть разное число хромосом или что они имеют пару хромосом разной формы. Этот вопрос был детально изучен на плодовой мушке дрозофиле, излюбленном объекте исследований генетиков. В 1910 г. американские генетики Т.Г.Морган и его сотрудники А.Стертевант, К.Бриджес и Г.Меллерустановили роль хромосом в определении пола у этой мушки. Оказалось, что у дрозофил три пары хромосом не имеют отношения к определению пола. Такие хромосомы называют соматическими хромосомами, или аутосомами. А четвертая пара хромосом тесно связана с определением пола и их называют половыми хромосомами.

Половые хромосомы оказались двух типов: длинные палочковидные, которые назвали Х-хромосомами, и изогнутые, которые назвали Y-хромосомами. Их сочетание и определяло пол мухи. Если в зиготу попадало две X-хромосомы, то такая зигота давала самку. Если же в зиготу попадали Х-хромосома и Y-хромосома, то развивался самец (рис. 108). Яйцеклетки всегда имели X-хромосому, а сперматозоиды были двух типов: с Х-хромосомой и с Y-хромосомой. Если сперматозоиды обоих типов одинаково эффективны (сливаются с яйцеклетками одинаково часто и при этом возникают одинаково жизнеспособные зиготы), то число самцов и самок в потомстве получается одинаковым.

До работ по генетике пола не было ни одного доказательства, что какой-то признак организма связан с определенной хромосомой. В ходе этих работ было выяснено, что такой важный признак, как пол, обуславливается половыми хромосомами. Этот результат сам по себе был важным доказательством роли хромосом в наследственности. Но Морган и его сотрудники, кроме того установили, что один из генов, определяющих окраску глаз дрозофил, лежит в половой Х-хромосоме. (Про признаки, гены которых лежат в половых хромосомах, говорят, что они сцеплены с полом. Изучение наследования гена окраски глаз дало еще одно доказательство тому, что гены расположены в хромосомах.

У дрозофил самки образуют одинаковые гаметы, в каждой из которых имеется половая Х-хромосома. Говорят, что у дрозофил женский пол является гомогаметным. Напротив, самцы образуют разные гаметы: в одних содержится Х-хромосома, а в других - Y-хромосома. Такой пол называется гетерогаметным. Если нарисовать решетку Пеннета, то и она показывает, что самцов и самок в потомстве должно быть равное число.

Хромосомная теория

Сущность хромосомной теории определения пола. Очень давно люди заметили, что соотношение полов у раздельнополых организмов близко к 1: 1, т. е. самцы и самки встречаются одинаково часто. Ниже указан процент мужских особей у разных организмов.

Еще Мендель обратил внимание, что такое же расщепление 1: 1 характерно для анализирующего скрещивания: АаХаа. Было высказано предположение, что один из полов должен быть гомозиготным, а другой - гетерозиготным. Первое экспериментальное доказательство в пользу этой гипотезы было получено К. Корренсом. Среди рода Bryonia (переступень) есть двудомные (В. dioica) и однодомные (В. alba) виды. Для того чтобы определить, как наследуют пол мужские и женские растения двудомного вида, было произведено скрещивание их с однодомным. Оказалось, что в потомстве женских растений были только женские, а в потомстве мужских - половина женских и половина мужских растений. Отсюда был сделан вывод, что женские растения Bryonia гомозиготны, а мужские - гетерозиготны.
Пол, образующий одинаковые в отношении определения пола гаметы, назвали гомогаметным, а пол, образующий разные гаметы, - гетерогаметным.
Решающее доказательство в пользу такого заключения, как было уже сказано (см. гл. 8), получили цитологи. Еще в конце прошлого века у клопа Lygaeus при изучении сперматогенеза были описаны гаплоидные сперматоциты II двух сортов: сХ-хромосомой и У-хромосомой, в отличие от самок, которые в яйцеклетках, кроме 6 аутосом, одинаковых с самцами, обязательно имели Х-хромосому (рис. 120). У другого клопа Protenor гетерогаметным полом также оказался мужской. Но у этого вида половина сперматоцитов, кроме 6 аутосом, имела Х-хромосому, а половина ее не имела (рис. 120).
Было высказано предположение, что Хи У-хромосомы имеют отношение к определению пола, их назвали половыми хромосомами. Экспериментальные доказательства этого были получены Т. Морганом и его сотрудниками при изучении наследования признаков, сцепленных с полом (см. гл. 8). Так была впервые сформулирована хромосомная теория определения пола.
Половые хромосомы и их роль в определении пола. Это открытие стимулировало дальнейшие цитологические исследования. Половые хромосомы были найдены у многих организмов. Среди растений впервые половые хромосомы были описаны у печеночного мха Sphaerocarpus. Известны они у высших растений: меландриума, щавеля, элодеи, хмеля и других. У животных они описаны для многих насекомых, птиц, млекопитающих. Описаны они и у человека.
Изучение половых хромосом показало, что они отличаются от аутосом не только генетически (см. гл. 8), но и цитологически. Половые хромосомы богаты гетерохроматином (см. гл. 2). Редупликация их происходит асинхронно с аутосомами, а у гомогаметного пола одна из Х-хромосом репродуцируется позже


остальных. В мейозе они часто сильно спирализованы (гетеропикноз). ПолоКариотипы С£ШЦ0В и самок вые хромосомы у гетерогаметного и хромосомные наборы гапола (гетерОМОрфные пары) не КОНЪмет гетерогаметного пола, югируют или конъюгируют лишь частично, что указывает на гомологичность лишь отдельных участков. Как уже говорилось (см. гл. 8), при расхождении Хи Ухромосом в редукционном делении образуются 2 разные клетки: одна с Х-хромосомой, другая - с У-хромосомой, следовательно, соотношение гамет с Хи У-хромосомой, образуемых гетерогаметный полом, бывает точно 1:1. Точно так же два сорта гамет образуются, если клетка содержит одну А-хромосому, при этом 50% гамет имеет Х-хромосому, а 50% не имеет ее. Гаметы, образуемые гомогаметным полом, все одинаковые и содержат Х-хромосому (название гомогаметный и указывает на это). В результате оплодотворения возникает равное количество самцов и самок. Иными словами, хромосомный механизм определения пола является идеальным саморегулирующимся механизмом. Анализ половых хромосом у различных организмов показал, что существуют разные типы хромосомного определения пола (табл. 14). Они получили название тип ХО и тип ХУ. Гетерогаметный полом может быть как мужской, так и женский. Сейчас описаны и более сложные комплексы половых хромосом, но они принципиально не отличаются от только что названных.

Гинандроморфизм. Иногда встречаются такие явления, которые как будто специально созданы природой для проверки правильности теории. В отношении хромосомной теории примером может служить явление гинандроморфизма. Организмы, совмещающие в себе части тела разных полов - мужского и женского, называют гинандроморфами (гин- 9, андр- d). Гинандроморфы существуют у тех видов, у которых четко выражен половой диморфизм (насекомые, птицы, человек), но встречаются они редко.
При латеральном гинандроморфизме, например у дрозофилы, одна половина тела имеет признаки женского пола, а другая - мужского (см. рис. на стр. 288). Как может возникнуть такой организм? Цитологические исследования показывают, что ткани гинандроморфа химерны: женская половина несет две Х-хромосомы, а мужская ■- одну.
На приведенном рисунке показан случай, когда у гинандроморфа рецессивный, сцепленный с полом ген white проявился на мужской стороне тела и не проявился на женской. Почему это так?
У гинандроморфа, возникшего из зиготы w+w, при первом делении дробления в силу каких-то необычных условий одна из Х-хромосом, несущая ген w+, в одной из дочерних клеток (бластомеров) утрачивается. Тогда две дочерние клетки окажутся неодинаковыми в отношении Z-хромосом: одна~~г, а вторая w.
Половина тела мухи, развившаяся из первой клетки, окажется женской и с красным глазом, а из второй разовьется половина тела с признаками мужского пола и с белым глазом, поскольку рецессивный ген w, содержащийся в единственной X-хромосоме, будет в гемизиготном состоянии.
Таким образом, и цитологический, и генетический анализ показывает, что в данном случае причиной гинандроморфизма может быть элиминация одной из Х-хромосом.
Кроме этого типа гинандроморфизма, который можно назвать монозиготным, известен также дизиготический гинандроморфизм. Он обнаружен у бабочек - Abraxas, тутового шелкопряда и у дрозофилы. Например, иногда в яйцеклетке тутового шелкопряда (самка гетерогаметна) образуются два женских пронуклеуса, один Из которых кроме аутосом (обозначим их А) содержит Х-хромосому (Х+А), а другой - У+А. При полиспермии оба пронуклеуса будут оплодотворены разными спермиями, тогда в одном из бластомеров будет ХХ + АА, а в другом - ХУ+АА. Это и приведет к развитию дизиготного гинандроморфа. Аналогично может возникать гинандроморф у дрозофилы, только здесь различия между бластомерами получаются за счет разных сперматозоидов (самцы гетерогаметны).
Исключения из хромосомной теории определения пола. По
мере накопления фактов хромосомная теория определения пола не только находила подтверждение, но и встречала некоторые трудности. Оставался открытым вопрос о том, не являются ли половые хромосомы индикаторами пола, вторично-половыми признаками?
Анализ исключительных особей у дрозофил, которые были получены в опытах Бриджеса, как результат нерасхождения половых хромосом (см. гл. 8) показал, что особи, имеющие, кроме аутосом, ХХУ-хромосомы (ХХУ+АА), являются самками, а особи ХО+АА - самцами. Эти факты убедительно говорили о том, что половые хромосомы отнюдь не индикаторы пола. Но как же они определяют пол, если особи ХУ+АА и ХО+АА являются самцами, а ХХ+АА и ХХУ+АА самками? Очевидно, дело обстоит не так просто, как это казалось вначале.

Балансовая теория

В результате неправильного расхождения хромосом в мейозе иногда возникают гаметы с необычным числом половых хромосом. Например, при образовании гамет самками дрозофил в одну из гамет могут попасть обе X-хромосомы, а в другую ни одной. Такие самки при скрещивании с обычными самцами дают потомков с необычными генотипами XXX и XXY. Какой же пол имеют эти мухи и мухи с другими необычными генотипами? Изучая этот вопрос, К.Бриджес в 1921 г. показал, что особи с генотипом XXY - самки, а особи с генотипами XXX - "сверхсамки" с необычно сильно развитыми яичниками. Бриджэс предположил, что у дрозофил пол определяется соотношением (балансом; почему эта теория и получила название балансовой теории определения пола) числа половых хромосом и аутосом. По предположению Бриджэса, Y-хромосома у дрозофил фактически не играет роли в определении пола. Например, если мухи имеют генотип 2A+2Х (диплоидный набор аутосом и две Х-хромосомы), так что одна Х-хромосома приходится на один гаплоидный набор аутосом, то это самка. Другие соотношения видны из табл. 128: Бриджэс получил также мух с генотипом ЗA+X, у которых отношение числа половых хромосом к числу аутосом равно 1/3, т.е. еще меньше, чем у нормальных самцов. Из таких зигот развивались сверхсамцы.

Y-хромосома человека

У растений и животных наиболее распространён хромосомный механизм определения пола. В зависимости от того, какой пол является гетерогаметным, выделяют следующие типы хромосомного определения пола:

самки гомогаметны, самцы гетерогаметны

самки XX; самцы XY

самки XX; самцы X0

самки гетерогаметны, самцы гомогаметны

самки ZW; самцы ZZ

самки Z0; самцы ZZ

У особей гомогаметного пола ядра всех соматических клеток содержат диплоидный набор аутосом и две одинаковые половые хромосомы, которые обозначаются как XX (ZZ). Организмы такого пола продуцируют гаметы только одного класса - содержащие по одной X (Z) хромосоме. У особей гетерогаметного пола в каждой соматической клетке, помимо диплоидного набора аутосом, содержатся либо две разнокачественные половые хромосомы, обозначаемые как Х и Y (Z и W), либо только одна - X (Z) (тогда количество хромосом получается нечётным). Соответственно у особей такого пола образуются два класса гамет: либо несущие X/Z-хромосомы и Y/W-хромосомы, либо несущие X/Z-хромосомы и не несущие никаких половых хромосом.

У многих видов животных и растений гомогаметен женский пол, а гетерогаметен мужской. К ним относятся млекопитающие, некоторые насекомые, некоторые рыбы и некоторые растения и др.

Гомогаметный мужской пол и гетерогаметный женский имеют птицы, бабочки и некоторые рептилии.

В результате неправильного расхождения хромосом в мейозе иногда возникают гаметы с необычным числом половых хромосом. Например, при образовании гамет самками дрозофил в одну из гамет могут попасть обе X-хромосомы, а в другую ни одной. Такие самки при скрещивании с обычными самцами дают потомков с необычными генотипами XXX и XXY. Какой же пол имеют эти мухи и мухи с другими необычными генотипами? Изучая этот вопрос, К.Бриджес в 1921 г. показал, что особи с генотипом XXY - самки, а особи с генотипами XXX - "сверхсамки" с необычно сильно развитыми яичниками. Бриджэс предположил, что у дрозофил пол определяется соотношением (балансом; почему эта теория и получила название балансовой теории определения пола) числа половых хромосом и аутосом. По предположению Бриджэса, Y-хромосома у дрозофил фактически не играет роли в определении пола. Например, если мухи имеют генотип 2A+2Х (диплоидный набор аутосом и две Х-хромосомы), так что одна Х-хромосома приходится на один гаплоидный набор аутосом, то это самка. Бриджэс получил также мух с генотипом ЗA+X, у которых отношение числа половых хромосом к числу аутосом равно 1/3, т.е. еще меньше, чем у нормальных самцов. Из таких зигот развивались сверхсамцы.

21.Классическими эмбриогенетическими исследованиями установлены два правила определения пола у млекопитающих. Первое из них сформулировано в 1960-х годах Альфредом Жостом на основе экспериментов по удалению зачатка будущих гонад (гонадный валик) у ранних эмбрионов кроликов: удаление валиков до формирования гонады приводило к развитию всех эмбрионов как самок. Было высказано предположение о секреции гонадами самцов эффекторного гормона тестостерона, ответственного за маскулинизацию плодов, и предсказано наличие второго эффектора антимюллеровского гормона (MIS), непосредственно контролирующего такие анатомические преобразования. Результаты наблюдений были сформулированы в виде правила: специализация развивающихся гонад в яички или яичник определяет последующую половую дифференцировку эмбриона.

До 1959 года предполагалось, что количество Х-хромосом является важнейшим фактором контроля пола у млекопитающих. Однако обнаружение организмов с единственной X-хромосомой, развивающихся как самки, а особей с одной Y-хромосомой и множественными X-хромосомами, которые развивались, как самцы, заставило отказаться от таких представлений. Было сформулировано второе правило определения пола у млекопитающих: Y-хромосома несет генетическую информацию, требуемую для определения пола у самцов.

Комбинация приведённых выше двух правил иногда называется принципом роста: Хромосомный пол, связанный с присутствием или отсутствием Y-хромосомы, определяет дифференцировку эмбриональной гонады, которая, в свою очередь, контролирует фенотипический пол организма. Подобный механизм определения пола называют генетическим (англ. GSD) и противопоставляют таковому, основанному на контролирующей роли факторов внешней среды (англ. ESD) или соотношению половых хромосом и аутосом (англ. CSD).

Тельце Барра (X-половой хроматин) - свёрнутая в пло́тную (гетерохроматиновую) структуру неактивная X-хромосома, наблюдаемая в интерфазных ядрах соматических клеток самок плацентарных млекопитающих, включая человека. Хорошо прокрашивается осно́вными красителями.

Из двух X-хромосом генома любая в начале эмбрионального развития может инактивироваться, выбор осуществляется случайно. У мыши исключением являются клетки зародышевых оболочек, также образующихся из ткани зародыша, в которых инактивируется исключительно отцовская X-хромосома.

Таким образом, у самки млекопитающего, гетерозиготной по какому-либо признаку, определяемому геном X-хромосомы, в разных клетках работают разные аллели этого гена (мозаицизм). Классическим видимым примером такого мозаицизма является окраска черепаховых кошек - в половине клеток активна X-хромосома с «рыжим», а в половине - с «чёрным» аллелем гена, участвующего в формировании меланина. Коты черепаховой окраски встречаются крайне редко и имеют две X-хромосомы (анеуплоидия).

У людей и животных с анеуплоидией, имеющих в геноме 3 и более X-хромосом (см., напр., синдром Клайнфельтера), число телец Барра в ядре соматической клетки на единицу меньше числа X-хромосом.

22 .Наследование, сцепленное с полом - наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием W-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.

Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей.

Наследование признаков ограниченных полом - Наследование признаков, контролируемых генами, локализованными в аутосомах, но фенотипически продолжающихся исключительно или преимущественно у одного пола, называется наследованием, ограниченным полом.К ограниченным полом признаками относят, например, различия полов по размерам, более яркая окраска самцов, шпоры у петухов, признаки молочности у коров, кобыл, яйценоскость у кур.

Проблема регуляции пола вытекает из необходимости увеличения продукции животноводства за счет преимущественного получения особей одного пола, дающих более высокий выход молока, мяса, шерсти, яиц и т.д. так, например, в молочном скотоводстве более желательным является рождение телочек, а в мясном – бычков, так как они быстрее растут. От высокоценных племенных быков и коров целесообразнее получать мужских потомков для более быстрого размножения их генотипов. В яичном птицеводстве экономически более выгодно получение курочек.

В связи с этими практическими потребностями исследователи не только стремятся познать механизмы распределения пола, но и изучают возможности искусственного регулирования пола. Были проведены опыты по анрогенезу тутового шелкопряда. В связи с тем, что мужские особи тутового шелкопряда дают более крупные коконы, содержащие на 25-30% больше шелка, чем коконы гусениц-самок, советские ученые при помощи партеногенеза (развитие организма без оплодотворения) смогли искусственно создать мужскую особь. Неоплодотворенные яйца шелкопряда подвергали тепловому шелку и облучали рентгеном, тем самым разрушали их ядра, не повреждая цитоплазму. Зигота формировалась путем слияния ядер двух проникших в яйцо спермиев. Развившиеся из нее особи имели признаки только отцовского вида. Так же для раннего определения пола цыплят использовали сцепленную с полом окраску.

Признаки, зависящие от пола . Гены этих признаков содержатся в ауто сомах и могут проявляться у представителей обоих полов, но тип наследования (рецессивный или доминантный) зависит от пола. Например, признаком, зависит от пола у человека, есть облысение. Аллель, который отвечает за частичное облысение у мужчин, является доминантным и, соответственно, признак проявляется при наличии одного его копии. У женщин Фенотиповий проявление этого признака требует присутствия в генотипе двух копий аллеля, т.е. тот самый аллель ведет себя как рецессивный. Экспрессия генов зависимых от пола признаков определяется гормональным статусом, и в результате гетерозиготы разных полов имеют различные фенотипы. Аналогично наследуются признаки рогатости и комолости у овец.

Следует заметить, что большинство генов, которые определяют характерное для данного пола фенотип, находятся не в половых хромосомах, а в аутосомах. Признаки, которые они вызывают (первичные и вторичные половые признаки), и являются признаками, ограниченными статью или зависимыми от него. Их проявление контролируется соответствующим балансом мужских и женских половых гормонов.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама