THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Сегодня мы узнаем, как выполняется деление многочленов друг на друга, причем выполнять деление мы будем уголком по аналогии с обычными числами. Это очень полезный прием, который, к сожалению, не изучают в большинстве школ. Поэтому внимательно прослушайте данный видеоурок. Ничего сложного в таком делении нет.

Для начала давайте разделим друг на друга два числа:

Как можно это сделать? В первую очередь, мы отсекаем столько разрядов, чтобы полученное числовое значение было больше чем то, на которое мы делим. Если мы отсечем один разряд, то получим пять. Очевидно, семнадцать в пять не вмещается, поэтому этого недостаточно. Берем два разряда — у нас выйдет 59 — оно уже больше, чем семнадцать, поэтому мы можем выполнить операцию. Итак, сколько раз семнадцать помещается в 59? Давайте возьмем три. Перемножаем и записываем результат под 59. Итого у нас получилось 51. Вычитаем и у нас вышло «восемь». Теперь сносим следующий разряд — пять. Делим 85 на семнадцать. Берем пять. Перемножим семнадцать на пять и получаем 85. Вычитаем и у нас получается ноль.

Решаем реальные примеры

Задача № 1

Теперь выполним те же самые шаги, но не с числами, а с многочленами. Для примера возьмем такое:

\[\frac{{{x}^{2}}+8x+15}{x+5}=x+3\]

Обратите внимание, если при делении чисел друг на друга мы подразумевали, что делимое всегда больше делителя, то в случае деления полиномов уголком, необходимо, чтобы степень делимого была больше, чем делителя. В нашем случае все в порядке — мы работаем с конструкциями второй и первой степени.

Итак, первый шаг: сравниваем первые элементы. Вопрос: на что нужно домножить $x$, чтобы получилось ${{x}^{2}}$? Очевидно, что на еще один $x$. Умножаем $x+5$ на только что найденное число $x$. У нас есть ${{x}^{2}}+5$, которое вычитаем из делимого. Остается $3x$. Теперь сносим следующее слагаемое — пятнадцать. Снова посмотрим на первые элементы: $3x$ и $x$. На что следует домножить $x$, чтобы вышло$3x$? Очевидно, что на три. Домножаем почленно $x+5$ на три. Когда мы вычтем, то получим ноль.

Как видите, вся операция деления уголком свелась к сравнению старших коэффициентов при делимом и делителе. Это даже проще, чем когда вы делите числа. Тут не требуется выделять какое-то количество разрядов — мы просто на каждом шаге сравниваем старшие элементы. Вот и весь алгоритм.

Задача № 2

Давайте попробуем еще:

\[\frac{{{x}^{2}}+x-2}{x-1}=x+2\]

Первый шаг: посмотрим на старшие коэффициенты. На сколько нужно домножить $x$, чтобы записать${{x}^{2}}$? Домножаем почленно. Обратите внимание, при вычитании у нас получится именно $2x$, потому что

Сносим -2 и снова сравним первый полученный коэффициент со старшим элементом делителя. Итого у нас вышел «красивый» ответ.

Переходим ко второму примеру:

\[\frac{{{x}^{3}}+2{{x}^{2}}-9x-18}{x+3}={{x}^{2}}-x-6\]

В этот раз в качестве делимого выступает полином третьей степени. Сравним между собой первые элементы. Для того чтобы получилось ${{x}^{3}}$, необходимо $x$ домножить на ${{x}^{2}}$. После вычитания сносим $9x$. Домножаем делитель на $-x$ и вычитаем. В итоге наше выражение полностью разделилось. Записываем ответ.

Задача № 3

Переходим к последней задаче:

\[\frac{{{x}^{3}}+3{{x}^{2}}+50}{x+5}={{x}^{2}}-2x+10\]

Сравниваем ${{x}^{3}}$ и $x$. Очевидно, нужно домножить на ${{x}^{2}}$. В итоге мы видим, что мы получили очень «красивый» ответ. Записываем его.

Вот и весь алгоритм. Ключевых моментов здесь два:

  1. Всегда сравнивайте первую степень делимого и делителя — повторяем это на каждом шаге;
  2. Если в исходном выражении пропущены какие-либо степени, при делении уголком их обязательно следует добавить, но с нулевыми коэффициентами, иначе ответ будет неправильным.

Больше никаких премудростей и хитростей в таком делении нет.

Материал сегодняшнего урока нигде и никогда не встречается в «чистом» виде. Его редко изучают в школах. Однако умение делить многочлены друг на друга очень поможет вам при решении уравнений высших степеней, а также всевозможных задач «повышенной трудности». Без данного приема вам придется раскладывать многочлены на множители, подбирать коэффициенты — и результат при этом отнюдь не гарантирован. Однако многочлены можно делить и уголком — так же, как и обычные числа! К сожалению, данный прием не изучают в школах. Многие учителя считают, что деление многочленов уголком — это что-то безумно сложное, из области высшей математики. Спешу вас заверить: это не так. Более того, делить многочлены даже проще, чем обычные числа! Посмотрите урок — и убедитесь в этом сами.:) В общем, обязательно возьмите этот прием на вооружение. Умение делить многочлены друг на друга очень пригодится вам при решении уравнений высших степеней и в других нестандартных задачах.

Я надеюсь, этот ролик поможет тем, кто работает с полиномами, особенно высших степеней. Это относится и к старшеклассникам, и к студентам университетов. А у меня на этом все. До встречи!

Деление «уголком» - это, на мой взгляд, самая тяжелая, самая нудная тема во всей школьной математике. Тут нам придется всерьез поднапрячься. Пусть, однако, нас вдохновляет мысль, что весь последующий материал будет значительно легче и приятнее.

Прежде всего, рассмотрим деление на однозначное число. Допустим, мы хотим вычислить значение выражения

Пользуясь свойствами умножения, мы можем расписать делимое таким образом:

6 ∙ 100 + 4 ∙ 10 + 8 =

3 ∙ 2 ∙ 100 + 2 ∙ 2 ∙ 10 + 4 ∙ 2 =

( 3 ∙ 100 + 2 ∙ 10 + 4 ) ∙ 2 =

3 2 4 ∙ 2 .

После этого становится очевидно, что частное от деления равно

Но это мы взяли самый что ни на есть простейший случай, когда каждую отдельно взятую цифру делимого можно поделить на делитель. А вот пример несколько посложнее:

Здесь первая цифра оказалась меньше делителя. Поэтому, расписывая делимое, мы не будем отрывать ее от второй цифры:

15 ∙ 10 + 6 .

Поскольку число 15 не делится нацело на 2, придется нам прибегнуть к делению с остатком. Представим результат такого деления в виде:

15 = 7 ∙ 2 + 1 = 14 + 1 .

Теперь мы можем продолжать расписывать наше делимое дальше:

15 ∙ 10 + 6 =

( 14 + 1 ) ∙ 10 + 6 =

14 ∙ 10 + 1 ∙ 10 + 6 =

14 ∙ 10 + 16 =

7 ∙ 2 ∙ 10 + 8 ∙ 2 =

( 7 ∙ 10 + 8 ) ∙ 2 =

7 8 ∙ 2 .

Отсюда моментально получаем ответ:

Такого рода расчеты можно проводить в уме и сразу же писать ответ. Но мы сейчас перепишем их в виде краткой таблицы. Умение составлять такие таблицы нам пригодится, когда мы займемся делением на многозначные числа, когда всё окажется не так просто. Делимое и делитель запишем так:

При делении первых двух разрядов ( 15 ) на двойку получается 7 плюс еще какой-то остаток. С этим остатком мы разберемся чуть позже, а пока запишем семерку под чертой снизу от делителя (здесь у нас со временем будет выписан полный ответ):

Умножаем на эту семерку наш делитель ( 2 ) и записываем ответ ( 14 ) под первыми двумя разрядами делимого ( 15 ):

Теперь настало время вычислить остаток от деления 15-ти на 2 . Он равен, очевидно,

15 − 2 ∙ 7 = 15 − 14 .

У нас уже всё подготовлено, чтобы выполнить это вычитание «столбиком»:

У нас получается единица , к которой мы приписываем шестерку из следующего разряда делимого:

В результате такого приписывания у нас получается число 16 . Мы делим его на наш делитеть ( 2 ) и получаем 8 . Эту восьмерку пишем в строке ответа, под чертой снизу от делителя:

Ответ мы получили, однако правила составления таблицы таковы, что нам надо добавить в нее еще две строки. Мы должны формальным образом убедиться, что не потеряли остаток от деления. Умножаем делитель ( 2 ) на последнюю цифру ответа ( 8 ), приписываем результат ( 16 ) снизу к нашей таблице в последние два разряда делимого:

Вычитаем последнюю строку из предпоследней и получаем 0:

Этот последний нуль есть не что иное, как остаток от деления, который образовался бы в том случае, если бы мы рассматривали деление с остатком:

156: 2 = 78 (ост. 0).

Чтобы получше это понять, возьмем похожий пример, в котором, однако, остаток не равен нулю:

157: 2 = 78 (ост. 1).

Таблица для этого примера выглядит так:

Здесь, опять-таки, остаток стоит в последней строке. Для полноты картины распишем наше делимое в таком виде:

14 ∙ 10 + 17 =

7 ∙ 2 ∙ 10 + 8 ∙ 2 + 1 =

( 7 ∙ 10 + 8 ) ∙ 2 + 1 =

7 8 ∙ 2 + 1

Теперь мы готовы к тому, чтобы делить (нацело или с остатком) на многозначные числа. Это делается при помощи подобной же таблицы (именно из-за ее особого вида данная процедура получила название деление «уголком» ). Допустим, требуется выполнить деление с остатком:

Приступаем к заполнению таблицы:

В данном случае, чтобы найти первую цифру частного, надо взять первые четыре цифры делимого ( 1356 ) и получившееся число поделить (с остатком) на делитель ( 259 ). Почему надо взять именно первые четыре цифры делимого? Потому что если бы мы взяли хотя бы на одну цифру меньше, то получившееся число ( 135 ) оказалось бы меньше делителя ( 259 ), а это совсем не то, из чего можно было бы извечь полезную информацию. Итак, возьмем первые четыре цифры делимого и рассмотрим следующее деление с остатком:

1356 : 259 = ?

Тут нам помогут приближенные вычисления, для которых, как мы знаем, вовсе необязательно, чтобы числа делились друг на друга нацело:

1356 / 259 ≈ 1356 / 300 ≈ 1500 / 300 = 15 / 3 = 5 .

Зная результат приближенного деления, мы можем предположить, что, скорее всего,

1356 : 259 = 5 (остаток - пока неважно какой).

Конечно, абсолютной уверенности у нас нет. Здесь вместо пятерки вполне может стоять четверка или шестерка , однако вряд ли мы ошиблись больше, чем на одну единицу. Имея это в виду, тем не менее берем эту пятерку и заносим ее в нашу таблицу в строку ответа. После этого умножаем на нее делитель ( 259 ) и при этом записываем ответ под делимым в подходящие разряды:

259 ∙ 5 =

Здесь «маленькие» цифры - это побочный продукт процедуры умножения: мы познакомились с ними, когда учились умножать «в столбик». После того как умножение выполнено, они становятся больше не нужны: на них можно просто не обращать внимания. Выражение 259 ∙ 5 , написанное слева от таблицы, помещено сюда только ради пояснения того, что мы делаем. К таблице оно, собственно, не принадлежит, и в будущем мы такие пояснения выписывать не будем. Тут важно отметить, что результат нашего умножения ( 1295 ) оказался меньше записанного над ним числа 1356 , составленного из первых четырех цифр делимого. Если бы это было не так, то это означало бы, что приближенное деление дало нам завышенный результат. Нам надо было бы тогда зачеркнуть пятерку в строке ответа, на ее место поставить четверку - после чего зачеркнуть и переделать все наши последующие вычисления. Но нам на этот раз повезло, и ничего переделывать не требуется.

Теперь выполняем вычитание в столбик и получаем:

259 ∙ 5 =

Внимательно приглядимся к полученной разности ( 61 ). Очень важно, что она оказалась меньше делителя ( 259 ). В противном случае мы пришли бы к выводу, что приближенное деление дало нам заниженный результат и нам пришлось бы теперь исправлять в строке ответа пятерку на шестерку , а также переделывать все последующие вычисления. К счастью, этого не случилось. Приближенное вычисление нас не подвело, и мы теперь совершенно точно знаем, что,

1356 : 259 = 5 (ост. 61 ).

Возвращаемся к таблице. К нашему остатку ( 61 ) приписываем семерку из следующего разряда делимого и приступаем к нахождению второй цифры ответа. Это делается с помощью точно такой же процедуры, что и раньше. Потом - очередь за третьей цифрой. В конце концов таблица принимает такой вид:

259 ∙ 5 =

259 ∙ 2 =

259 ∙ 3 =

Можно выписывать окончательный ответ:

135674: 259 = 523 (ост. 217).

Самая большая неприятность в делении «уголком» состоит в том, что приближенные вычисления, к которым приходится прибегать по ходу дела, не дают сразу гарантированно правильного результата и нуждаются иногда в последующей коррекции. Впрочем, по мере тренировки, у нас выработается особое чутье и мы будем уже сразу почти наверняка знать, какие цифры следует писать в строке ответа, чтобы потом ничего больше не надо было исправлять и переделывать.

Разумеется, нам будут попадаться случаи, когда частное содержит нули. Каждый такой нуль позволит сделать в таблице небольшие сокращения. Вот пример такой таблицы:

Как и в случае умножения «в столбик», для того чтобы было удобнее писать «маленькие» цифры, нам может понадобиться

Теперь остается только тренироваться, тренироваться и тренироваться.

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}

Приводится доказательство, что неправильную дробь, составленную из многочленов, можно представить в виде суммы многочлена и правильной дроби. Подробно разобраны примеры деления многочленов уголком и умножения столбиком.

Теорема

Пусть P k (x) , Q n (x) - многочлены от переменной x степеней k и n , соответственно, причем k ≥ n . Тогда многочлен P k (x) можно представить единственным способом в следующем виде:
(1) P k (x) = S k-n (x) Q n (x) + U n-1 (x) ,
где S k-n (x) - многочлен степени k-n , U n-1 (x) - многочлен степени не выше n-1 , или нуль.

Доказательство

По определению многочлена:
;
;
;
,
где p i , q i - известные коэффициенты, s i , u i - неизвестные коэффициенты.

Введем обозначение:
.
Подставим в (1) :
;
(2) .
Первый член в правой части - это многочлен степени k . Сумма второго и третьего членов - это многочлен степени не выше k - 1 . Приравняем коэффициенты при x k :
p k = s k-n q n .
Отсюда s k-n = p k / q n .

Преобразуем уравнение (2) :
.
Введем обозначение: .
Поскольку s k-n = p k / q n , то коэффициент при x k равен нулю. Поэтому - это многочлен степени не выше k - 1 , . Тогда предыдущее уравнение можно переписать в виде:
(3) .

Это уравнение имеет тот же вид, что и уравнение (1) , только значение k стало на 1 меньше. Повторяя эту процедуру k-n раз, получаем уравнение:
,
из которого определяем коэффициенты многочлена U n-1 (x) .

Итак, мы определили все неизвестные коэффициенты s i , u l . Причем s k-n ≠ 0 . Лемма доказана.

Деление многочленов

Разделив обе части уравнения (1) на Q n (x) , получим:
(4) .
По аналогии с десятичными числами, S k-n (x) называется целой частью дроби или частным, U n-1 (x) - остатком от деления. Дробь многочленов, у которой степень многочлена в числителе меньше степени многочлена в знаменателе называется правильной дробью. Дробь многочленов, у которой степень многочлена в числителе больше или равна степени многочлена в знаменателе называется неправильной дробью.

Уравнение (4) показывает, что любую неправильную дробь многочленов можно упростить, представив ее в виде суммы целой части и правильной дроби.

По своей сути, целые десятичные числа являются многочленами, у которых переменная равна числу 10 . Например, возьмем число 265847. Его можно представить в виде:
.
То есть это многочлен пятой степени от 10 . Цифры 2, 6, 5, 8, 4, 7 являются коэффициентами разложения числа по степеням числа 10.

Поэтому к многочленам можно применить правило деления уголком (иногда его называют делением в столбик), применяемое к делению чисел. Единственное отличие заключается в том, что, при делении многочленов, не нужно переводить числа больше девяти в старшие разряды. Рассмотрим процесс деления многочленов уголком на конкретных примерах.

Пример деления многочленов уголком


.

Решение

Здесь в числителе стоит многочлен четвертой степени. В знаменателе - многочлен второй степени. Поскольку 4 ≥ 2 , то дробь неправильная. Выделим целую часть, разделив многочлены уголком (в столбик):



Приведем подробное описание процесса деления. Исходные многочлены записываем в левый и правый столбики. Под многочленом знаменателя, в правом столбике, проводим горизонтальную черту (уголок). Ниже этой черты, под уголком, будет целая часть дроби.

1.1 Находим первый член целой части (под уголком). Для этого разделим старший член числителя на старший член знаменателя: .

1.2 Умножаем 2 x 2 на x 2 - 3 x + 5 :
. Результат записываем в левый столбик:

1.3 Берем разность многочленов в левом столбике:

.



Итак, мы получили промежуточный результат:
.

Дробь в правой части неправильная, поскольку степень многочлена в числителе (3 ) больше или равна степени многочлена в знаменателе (2 ). Повторяем вычисления. Только теперь числитель дроби находится в последней строке левого столбика.
2.1 Разделим старший член числителя на старший член знаменателя: ;

2.2 Умножаем на знаменатель: ;

2.3 И вычитаем из последней строки левого столбика: ;


Промежуточный результат:
.

Снова повторяем вычисления, поскольку в правой части стоит неправильная дробь.
3.1 ;
3.2 ;
3.3 ;


Итак, мы получили:
.
Степень многочлена в числителе правой дроби меньше степени многочлена знаменателя, 1 < 2 . Поэтому дробь - правильная.

Ответ

;
2 x 2 - 4 x + 1 - это целая часть;
x - 8 - остаток от деления.

Пример 2

Выделить целую часть дроби и найти остаток от деления:
.

Решение

Выполняем те же действия, что и в предыдущем примере:

Здесь остаток от деления равен нулю:
.

Ответ

Умножение многочленов столбиком

Также можно умножать многочлены столбиком, аналогично умножению целых чисел. Рассмотрим конкретные примеры.

Пример умножения многочленов столбиком

Найти произведение многочленов:
.

Решение

1

2.1
.

2.2
.

2.3
.
Результат записываем в столбик, выравнивая степени x .

3
;
;
;
.

Заметим, что можно было записывать только коэффициенты, а степени переменной x можно было опустить. Тогда умножение столбиком многочленов будет выглядеть так:

Ответ

Пример 2

Найти произведение многочленов столбиком:
.

Решение

При умножении многочленов столбиком важно записывать одинаковые степени переменной x друг под другом. Если некоторые степени x пропущены, то их следует записывать явно, умножив на нуль, либо оставлять пробелы.

В этом примере некоторые степени пропущены. Поэтому запишем их явно, умноженными на нуль:
.
Умножаем многочлены столбиком.

1 Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1 Умножаем младший член второго многочлена на первый многочлен:
.
Результат записываем в столбик.

2.2 Следующий член второго многочлена равен нулю. Поэтому его произведение на первый многочлен также равно нулю. Нулевую строку можно не записывать.

2.3 Умножаем следующий член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

2.3 Умножаем следующий (старший) член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

3 После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x :

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Коэффициент $a_0$ называют старшим коэффициентом многочлена $P_n(x)$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старший коэффициент равен $4$ (число перед $x^{14}$). Число $a_n$ называют свободным членом многочлена $P_n(x)$. Например, для $4x^{14}+87x^2+4x-11$ свободный член равен $(-11)$. Теперь обратимся к теореме, на которой, собственно говоря, и будет основано изложение материала на данной странице.

Для любых двух многочленов $P_n(x)$ и $G_m(x)$ можно найти такие многочлены $Q_p(x)$ и $R_k(x)$, что будет выполнено равенство

\begin{equation} P_n(x)=G_m(x)\cdot Q_p(x)+R_k(x) \end{equation}

причём $k < m$.

Словосочетание "разделить многочлен $P_n(x)$ на многочлен $G_m(x)$" означает "представить многочлен $P_n(x)$ в форме (1)". Будем называть многочлен $P_n(x)$ - делимым, многочлен $G_m(x)$ - делителем, многочлен $Q_p(x)$ - частным от деления $P_n(x)$ на $G_m(x)$, а многочлен $R_k(x)$ - остачей от деления $P_n(x)$ на $G_m(x)$. Например, для многочленов $P_6(x)=12x^6+3x^5+16x^4+6x^3+8x^2+2x+1$ и $G_4(x)=3x^4+4x^2+2$ можно получить такое равенство:

$$ 12x^6+3x^5+16x^4+6x^3+8x^2+2x+1=(3x^4+4x^2+2)(4x^2+x)+2x^3+1 $$

Здесь многочлен $P_6(x)$ является делимым, многочлен $G_4(x)$ - делителем, многочлен $Q_2(x)=4x^2+x$ - частным от деления $P_6(x)$ на $G_4(x)$, а многочлен $R_3(x)=2x^3+1$ - остатком от деления $P_6(x)$ на $G_4(x)$. Замечу, что степень остатка (т.е. 3) меньше степени делителя, (т.е. 4), посему условие равенства соблюдено.

Если $R_k(x)\equiv 0$, то говорят, что многочлен $P_n(x)$ делится на многочлен $G_m(x)$ без остатка. Например, многочлен $21x^6+6x^5+105x^2+30x$ делится на многочлен $3x^4+15$ без остатка, так как выполнено равенство:

$$ 21x^6+6x^5+105x^2+30x=(3x^4+15)\cdot(7x^2+2x) $$

Здесь многочлен $P_6(x)=21x^6+6x^5+105x^2+30x$ является делимым; многочлен $G_4(x)=3x^4+15$ - делителем; а многочлен $Q_2(x)=7x^2+2x$ - частным от деления $P_6(x)$ на $G_4(x)$. Остаток равен нулю.

Чтобы разделить многочлен на многочлен часто применяют деление "столбиком" или, как его ещё называют, "уголком". Реализацию этого метода разберём на примерах.

Перед тем, как перейти к примерам, я введу ещё один термин. Он не является общепринятым , и использовать его мы будем исключительно для удобства изложения материала. До конца этой страницы будем называть старшим элементом многочлена $P_n(x)$ выражение $a_{0}x^{n}$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старшим элементом будет $4x^{14}$.

Пример №1

Разделить $10x^5+3x^4-12x^3+25x^2-2x+5$ на $5x^2-x+2$, используя деление "столбиком".

Итак, мы имеем два многочлена, $P_5(x)=10x^5+3x^4-12x^3+25x^2-2x+5$ и $G_2(x)=5x^2-x+2$. Степень первого равна $5$, а степень второго равна $2$. Многочлен $P_5(x)$ - делимое, а многочлен $G_2(x)$ - делитель. Наша задача состоит в нахождении частного и остатка. Поставленную задачу будем решать пошагово. Будем использовать ту же запись, что и для деления чисел:

Первый шаг

Разделим старший элемент многочлена $P_5(x)$ (т.е. $10x^5$) на старший элемент многочлена $Q_2(x)$ (т.е. $5x^2$):

$$ \frac{10x^5}{5x^2}=2x^{5-2}=2x^3. $$

Полученное выражение $2x^3$ - это первый элемент частного:

Умножим многочлен $5x^2-x+2$ на $2x^3$, получив при этом:

$$ 2x^3\cdot (5x^2-x+2)=10x^5-2x^4+4x^3 $$

Запишем полученный результат:

Теперь вычтем из многочлена $10x^5+3x^4-12x^3+25x^2-2x+5$ многочлен $10x^5-2x^4+4x^3$:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5-(10x^5-2x^4+4x^3)=5x^4-16x^3+25x^2-2x+5 $$

На этом первый шаг заканчивается. Тот результат, что мы получили, можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot 2x^3+5x^4-16x^3+25x^2-2x+5 $$

Так как степень многочлена $5x^4-16x^3+25x^2-2x+5$ (т.е. 4) больше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления надобно продолжить. Перейдём ко второму шагу.

Второй шаг

Теперь уже будем работать с многочленами $5x^4-16x^3+25x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на первом шаге, разделим старший элемент первого многочлена (т.е. $5x^4$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{5x^4}{5x^2}=x^{4-2}=x^2. $$

Полученное выражение $x^2$ - это второй элемент частного. Прибавим к частному $x^2$

Умножим многочлен $5x^2-x+2$ на $x^2$, получив при этом:

$$ x^2\cdot (5x^2-x+2)=5x^4-x^3+2x^2 $$

Запишем полученный результат:

Теперь вычтем из многочлена $5x^4-16x^3+25x^2-2x+5$ многочлен $5x^4-x^3+2x^2$:

$$ 5x^4-16x^3+25x^2-2x+5-(5x^4-x^3+2x^2)=-15x^3+23x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом второй шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2)-15x^3+23x^2-2x+5 $$

Так как степень многочлена $-15x^3+23x^2-2x+5$ (т.е. 3) больше степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к третьему шагу.

Третий шаг

Теперь уже будем работать с многочленами $-15x^3+23x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $-15x^3$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{-15x^3}{5x^2}=-3x^{2-1}=-3x^1=-3x. $$

Полученное выражение $(-3x)$ - это третий элемент частного. Допишем к частному $-3x$

Умножим многочлен $5x^2-x+2$ на $(-3x)$, получив при этом:

$$ -3x\cdot (5x^2-x+2)=-15x^3+3x^2-6x $$

Запишем полученный результат:

Теперь вычтем из многочлена $-15x^3+23x^2-2x+5$ многочлен $-15x^3+3x^2-6x$:

$$ -15x^3+23x^2-2x+5-(-15x^3+3x^2-6x)=20x^2+4x+5 $$

Этот многочлен допишем уже под чертой:

На этом третий шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x)+20x^2+4x+5 $$

Так как степень многочлена $20x^2+4x+5$ (т.е. 2) равна степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к четвёртому шагу.

Четвёртый шаг

Теперь уже будем работать с многочленами $20x^2+4x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $20x^2$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{20x^2}{5x^2}=4x^{2-2}=4x^0=4. $$

Полученное число $4$ - это четвёртый элемент частного. Допишем к частному $4$

Умножим многочлен $5x^2-x+2$ на $4$, получив при этом:

$$ 4\cdot (5x^2-x+2)=20x^2-4x+8 $$

Запишем полученный результат:

Теперь вычтем из многочлена $20x^2+4x+5$ многочлен $20x^2-4x+8$:

$$ 20x^2+4x+5-(20x^2-4x+8)=8x-3 $$

Этот многочлен допишем уже под чертой.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама