THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

Обеспечение клеток энергией: как это происходит?

Немногие клетки получают энергию извне, они вырабатывают ее сами. обладают своеобразными "станциями". И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания. За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

Строение митохондрии

Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

Клеточное дыхание — основа жизни

Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

Первый этап — подготовительный

Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

Гликолиз

Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата. Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы и две молекулы ПВК (пировиноградной кислоты). Энергия клетки и запасается именно в виде АТФ.

Весь процесс гликолиза можно упрощенно изобразить таким образом:

2НАД+ 2АДФ + 2Н 3 РО 4 + С 6 Н 12 О 6 2Н 2 О + 2НАД. Н 2 +2С 3 Н 4 О 3 + 2АТФ

Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

Третий этап — окисление

Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть во время которой высвобождается больше всего энергии. На этом этапе вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ. Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

6О 2 + С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н2О + 38АТФ.

Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

Разнообразие ферментов митохондрий

Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов. Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание. Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

Все оксидоредуктазы можно разделить на две группы:

  • оксидазы;
  • дегидрогеназы;

Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

Оксидазы более разнообразны. В первую очередь они делятся на две группы:

  • те, которые содержат медь;
  • те, в составе которых присутствует железо.

К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

  • цитохромы a;
  • цитохромы b;
  • цитохромы c;
  • цитохромы d.

Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

Возможны ли другие пути получения энергии?

Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения. Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций. Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

Для примера рассмотрим Его можно выразить вот таким уравнением:

С 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

В химических реакциях при образовании связей между простыми молекулами энергия потребляется, а при разрыве выделяется.

В процессе фотосинтеза у зеленых растений энергия солнечного света переходит в энергию химических связей, возникающих между молекулами углекислого газа и воды. Образуется молекула глюкозы: CO 2 + H 2 O + Q (энергия) = C 6 H 12 O 6 .

Глюкоза является главным источником энергии для человека и большинства животных.

Процесс усвоения этой энергии называют " окислительное фосфорилирование". Энергия (Q), выделяющаяся при окислении, сразу используется на фосфорилирование аденозиндифосфорной кислоты (АДФ):

АДФ+Ф+Q (энергия)=АТФ

Получается "универсальная энергетическая валюта" клетки аденозинтрифосфорная кислота (АТФ). Она может в любой момент быть использована на любую полезную организму работу или на согревание.

АТФ®АДФ+Ф+Q (энергия)

Процесс окисления глюкозы проходит в 2 этапа.

1. Анаэробное (бескислородное) окисление, или гликолиз, происходит на гладкой эндоплазматической сети клетки. В результате этого глюкоза оказывается разорванной на 2 части, а выделившейся энергии достаточно для синтеза двух молекул АТФ.

2. Аэробное (кислородное) окисление. Две части от глюкозы (2 молекулы пировиноградной кислоты) при наличии кислорода продолжают ряд окислительных реакций. Этот этап протекает на митохондриях и приводит к дальнейшему разрыву молекул и выделению энергии.

Результатом второго этапа окисления одной молекулы глюкозы является образование 6 молекул углекислого газа, 6 молекул воды и энергии, которой достаточно для синтеза 36 молекул АТФ.

В качестве субстратов для окисления на втором этапе могут использоваться не только молекулы, полученные из глюкозы, но и молекулы, полученные в результате окисления липидов, белков, спиртов и других энергоемких соединений.

Активная форма уксусной кислоты - А-КоА (ацетил коэнзим А, или ацетил кофермент А) - это промежуточный продукт окисления всех этих веществ (глюкозы, аминокислот, жирных кислот и других).

А-КоА является точкой пересечения углеводного, белкового и липидного обменов.

При избытке глюкозы и других энергонесущих субстратов организм начинает их депонировать. В этом случае, глюкоза окисляется по обычному пути до молочной и пировиноградной кислоты, затем до А-КоА. Далее, А-КоА становится базой для синтеза молекулы жирных кислот и жиров, которые депонируются в подкожной жировой клетчатке. Наоборот, при недостатке глюкозы, ее синтезируют из белков и жиров через А-КоА (глюконеогенез).

При необходимости могут пополняться и запасы заменимых аминокислот для строительства некоторых белков.

В. Н. Селуянов, В. А. Рыбаков, М. П. Шестаков

Глава 1. Модели систем организма

1.1.3. Биохимия клетки (энергетика)

Процессы мышечного сокращения, передачи нервного импульса, синтеза белка и др. идут с затратами энергии. В клетках энергия используется только в виде АТФ. Освобождение энергии, заключенной в АТФ, осуществляется благодаря ферменту АТФ азе, который имеется во всех местах клетки, где требуется энергия. По мере освобождения энергии образуются молекулы АДФ, Ф, Н. Ресинтез АТФ осуществляется в основном за счет запаса КрФ. Когда КрФ отдает свою энергию для ресинтеза АТФ, то образуется Кр и Ф. Эти молекулы распространяются по цитоплазме и активизируют ферментативную активность, связанную с синтезом АТФ. Существуют два основных пути образования АТФ: анаэробный и аэробный (Аулик И. В., 1990; Хочачка П., Сомеро Дж., 1988 и др.).

Анаэробный путь или анаэробный гликолиз связан с ферментативными системами, расположенными на мембране сарко-плазматического ретикулума и в саркоплазме. При появлении рядом с этими ферментами Кр и Ф запускается цепь химических реакций, в ходе которых гликоген или глюкоза распадаются до пирувата с образованием молекул АТФ. Молекулы АТФ тут же отдают свою энергию для ресинтеза КрФ, а АДФ и Ф вновь используются в гликолизе для образования новой молекулы АТФ. Пируват имеет две возможности для преобразования:

1) Превратиться в Ацетил коэнзим А, подвергнуться в митохондриях окислительному фосфорилированию до образования углекислого газа, воды и молекул АТФ. Этот метаболический путь - гликоген-пируват-митохондрия-углекислый газ и вода - называют аэробным гликолизом.

2) С помощью фермента ЛДГ М (лактат-дегидрогеназы мышечного типа) пируват превращается в лактат. Этот метаболический путь - гликоген-пируват-лактат - называется анаэробным гликолизом и сопровождается образованием и накоплением ионов водорода.

Аэробный путь, или окислительное фосфорилирование, связан с митохондриальной системой. При появлении рядом с митохондриями Кр и Ф с помощью митохондриальной КФК азы выполняется ресинтез КрФ за счет АТФ, образовавшейся в митохондрии. АДФ и Ф поступают обратно в митохондрию для образования новой молекулы АТФ. Для синтеза АТФ имеется два метаболических пути:

    1) аэробный гликолиз;
    2) окисление липидов (жиров).

Аэробные процессы связаны с поглощением ионов водорода, а в медленных мышечных волокнах (МВ сердца и диафрагмы) преобладает фермент ЛДГ Н (лактат дегидрогеназа сердечного типа), который более интенсивно превращает лактат в пируват. Поэтому при функционировании медленных мышечных волокон (ММВ) идет быстрое устранение лактата и ионов водорода.

Увеличение в МВ лактата и Н приводит к ингибированию окисления жиров, а интенсивное окисление жиров приводит к накоплению в клетке цитрата, а он угнетает ферменты гликолиза.



Введение
1.1

Жизнедеятельность клеток требует энергетических затрат. Живые системы(организмы) получают ее из внешних источников, например, от Солнца(фототрофы, каковыми являются растения, некоторые виды простейших и микроорганизмы), или производят ее сами(аэробные аутотрофы) в результате окисления различных веществ(субстратов).

В обоих случаях клетки синтезируют универсальную высокоэнергетичную молекулу АТФ(аденозинтрифосфорную кислоту),при разрушении которой выделяется энергия. Эта энергия расходуется для выполнения всех видов функций- активного транспорта веществ, синтетических процессов, механической работы и т.д.

Сама по себе молекула АТФ достаточно проста и представляет собой нуклеотид, состоящий из аденина, сахара рибозы и трех остатков фосфорной кислоты.(Рис). Молекулярная масса АТФ невелика и составляет 500 дальтон. АТФ является универсальным переносчиком и хранителем энергии в клетке, которая заключена в высокоэнергетичных связях между тремя остатками фосфорной кислоты.

структурная формула пространственная формула

Рис 37. Аденозин-трифосфорная кислота (АТФ)

Цвета для обозначения молекул(пространственная формула):белый –водород,красный – кислород, зеленый –углерод, голубой –азот,темно-красный - фосфор

Отщепление одного лишь остатка фосфорной кислоты от молекулы АТФ сопровождается высвобождением значительной порции энергии – около 7,3 ккал.

Как же происходит процесс запасания энергии в виде АТФ? Рассмотрим это на примере окисления(сгорания) глюкозы – распространенного источника энергии для перевода в энергию химических связей АТФ.

Рис 38. Структурная формула

глюкозы (содержание в крови человека- 100 мг%)

Окисление одного моля глюкозы(180 г) сопровожда-

ется выделением около 690 ккал свободной энергии.

С 6 Н 12 О 6 + 6О 2 6СО 2 +6Н 2 О + Е(около 690 ккал)

В живой клетке это огромное количество энергии высвобождается не сразу, а постепенно в виде ступенчатого процесса и регулируется целым рядом окислительных ферментов. При этом, высвобождаемая энергия переходит не в тепловую энергию, как при горении, а запасается в виде химических связей в молекуле АТФ(макроэргические связи) в процессе синтеза АТФ из АДФ и неорганического фосфата. Этот процесс можно сравнить с работой аккумулятора, который заряжается от различных генераторов и может обеспечивать энергией множество машин и аппаратов. В клетке роль унифицированного аккумулятора выполняет система аденозин-ди и три-фосфорных кислот. Зарядка аденилового аккумулятора состоит в соединении АДФ с неорганическим фосфатом (реакция фосфорилирования) и образовании АТФ:

АДФ + Ф неорг АТФ + Н 2 О

Для образования всего 1 молекулы АТФ требуется затрата энергии извне в количестве 7,3 ккал. И наоборот, при гидролизе АТФ(разрядке аккумулятора) это же количество энергии выделяется. Оплата этого энергетического эквивалента, называемого в биоэнергетике “ квантом биологической энергии “ происходит из внешних ресурсов – то есть за счет пищевых веществ. Роль АТФ в жизнедеятельности клетки может быть представлена так:

Энергети- Система Система Функции

ческие ре- аккумуляции использова- клетки

сурсы энергии ния энергии

Рис.39 Общий план энергетики клетки

Синтез молекул АТФ происходит не только за счет расщепления углеводов(глюкозы), но и белков(аминокислот) и жиров(жирных кислот). Общая схема каскадов биохимических реакций такова(Рис).

1.Начальные этапы окисления происходят в цитоплазме клеток и не требуют участия кислорода. Эта форма окисления называется анаэробным окислением, или проще – гликолизом. Основной субстрат при анаэробном окислении –гексозы, преимущественно глюкоза. В процессе гликолиза происходит неполное окисление субстрата: глюкоза распадается до триоз (две молекулы пировиноградной кислоты). При этом, для осуществления реакции в клетке затрачивается две молекулы АТФ, но и синтезируется 4 молекулы АТФ. То есть, методом гликолиза клетка “ зарабатывает” всего две молекулы АТФ при окислении 1 молекулы глюкозы. С точки зрения эффективности энергетики это

маловыгодный процесс.При гликолизе высвобождается всего 5% энергии химических связей молекулы глюкозы.

С 6 Н 12 О 6 + 2Ф неорг +2АДФ 2 С 3 Н 4 О 3 +2АТФ + 2Н 2 О

Глюкоза пируват

2. Образовавшиеся в процессе гликолиза триозы (в основном-пировиноградная кислота, пируват) использу-

ются для дальнейшего более эффективного окисления, но уже в органеллах клетки – митохондриях. При этом, высвобождается энергия расщепления всех химических связей, что приводит к синтезу большого количества АТФ и потреблению кислорода.

Рис.40 Схема цикла Кребса(трикарбоновых кислот) и окислительного фосфорилирования(дыхательной цепи)

Эти процессы связаны с окислительным циклом трикарбоновых кислот (синонимы:циклом Кребса, циклом лимонной кислоты) и с цепью переноса электронов с одного фермента на другой (дыхательная цепь), когда из АДФ образуется АТФ путем присоединения одного остатка фосфорной кислоты(окислительное фосфорилирование).

Понятием “окислительное фосфорилирование “ определяют синтез АТФ из АДФ и фосфата за счет энергии окисления субстратов (питательных веществ).

Под окислением понимают отнятие электронов от вещества, соответственно – восстановление – присоединение электронов.

Какова роль окислительного фосфорилирования у человека? Представление об этом может дать следующий грубый расчет:

Взрослый человек при сидячей работе потребляет в день около 2800 ккал энергии с пищей. Для того, чтобы такое количество энергии было получено методом гидролиза АТФ, потребуется 2800/7,3 = 384 моль АТФ, или 190 кг АТФ. Тогда как известно, что в организме человека содержится около 50 г АТФ. Поэтому ясно, что для удовлетворения потребности в энергии в организме эти 50 г АТФ должны тысячи раз расщепиться и заново синтезироваться. Кроме того, сама скорость обновления АТФ в организме меняется в зависимости от физиологического состояния – минимальная во время сна и максимальная – при мышечной работе. А это означает, что окислительное фосфорилирование – не просто непрерывный процесс, но и регулируемый в широких пределах.

Суть окислительного фосфорилирования заключается в сопряжении двух процессов, когда окислительная реакция с привлечением энергии извне(экзэргическая реакция) увлекает за собой другую, эндэргическую реакцию фосфорилирования АДФ неорганическим фосфатом:

А в АДФ + Ф н

окисление фосфорилирование

Здесь А в –восстановленная форма вещества, подвергающегося фосфорилирующему окислению,

А о – окисленная форма вещества.

В цикле Кребса образовавшийся в результате гликолиза пируват (СН 3 СОСООН) окисляется до ацетата и соединяется с коферментом А, образуя ацетил-коА. После нескольких этапов окисления образуется шестиуглеродное соединение лимонная кислота(цитрат), также окисляющееся до оксал-ацетата; затем цикл повторяется(Cхема цикла трикарб. Кислот). При этом окислении выделяются две молекулы СО 2 и электроны, которые переносятся на акцепторные(воспринимающие) молекулы ко-ферментов(НАД – никотинамиддинуклеотид) и затем вовлекаются в цепь переноса электронов с одного субстрата(фермента) на другой.

При полном окислении одного моля глюкозы до СО 2 и Н 2 О в цикле гликолиза и трикарбоновых кислот образуется 38 молекул АТФ с энергией химических связей 324 ккал, а общий выход свободной энергии этого превращения, как отмечалось ранее, составляет 680 ккал. Эффективность выхода запасенной энергии в АТФ составляет 48%(324/680 х100%= 48%).

Cуммарное уравнение окисления глюкозы в цикле Кребса и гликолитическом цикле:

C 6 Н 12 О 6 +6О 2 +36 АДФ +Ф н 6СО 2 +36АТФ + 42Н 2 О

3. Освободившиеся в результате окисления в цикле Кребса электроны соединяются с ко-ферментом и транспортируются в цепь переноса электронов(дыхательную цепь) с одного фермента на другой, где в процессе переноса и происходит сопряжение(трансформация энергии электронов в энергию химических связей) с синтезом молекул АТФ.

Существует три участка дыхательной цепи, в которых энергия процесса окисления-восстановления трансформируется в энергию связей молекул в АТФ. Эти участки называются пунктами фосфорилирования:

1.Участок переноса электронов от НАД-Н к флавопротеиду, синтезируется 10 молекул АТФ за счет энергии окисления одной молекулы глюкозы,

2.Перенос электронов на участке от цитохрома б к цитохрому с 1 , фосфорилируется 12 молекул АТФ на одну молекулу глюкозы,

3. Перенос электронов на участке цитохром с – молекулярный кислород, синтезируется 12 молекул АТФ.

Итого, на этапе дыхательной цепи происходит синтез(фосфорилирование) 34 молекул АТФ. А общий выход АТФ в процессе аэробного окисления одной молекулы глюкозы составляет 40 единиц.

Таблица 1

Энергетика окисления глюкозы

На каждую пару электронов, передающихся по цепи от НАД –Н + к кислороду, синтезируется три молекулы АТФ

Дыхательная цепь представляет собой ряд белковых комплексов, встроенных во внутреннюю мембрану митохондрий(Рис 41).

Рис.41 Схема расположения ферментов дыхательной цепи во внутренней мембране митохондрий:

1-НАД-Н-дегидрогеназный комплекс, с 1 -комплекс, 3-цитохром-оксидазный комплекс, 4-убихинон, 5-цито-

хром-с, 6-матрикс митохондрии, внутренняя мембрана митохондрии,8- межмембранное пространство.

Итак, полное окисление исходного субстрата завершается высвобождением свободной энергии, значительная часть которой (до 50%) расходуется на синтез молекул АТФ, образованием СО 2 и воды.Другая половина свободной энергии окисления субстратов идет на следующие нужды клетки:

1. Для биосинтеза макромолекул(белков, жиров, углеводов),

2. Для процессов движения и сокращения,

3. Для активного транспорта веществ через мембраны,

4.Для обеспечения передачи генетической информации.

Рис.42 Общая схема процесса окислительного фосфорилирования в митохондриях .

1- наружная мембрана митохондрии, 2- внутренняя мембрана, 3- встроенный во внутреннюю мембрану фермент АТФ-синтетаза.

Синтез молекул АТФ

Синтез АТФ происходит во внутренней мембране митохондрий, смотрящей в матрикс(Рис 42 выше).В нее встроены специализировавнные белки-ферменты, занимающиеся исключительно синтезом АТФ из АДФ и неорганического фосфата Ф н -АТФ-синтетазы(АТФ-С) . В электронном микроскопе эти ферменты имеют весьма характерный вид, за что и были названы “грибовидными тельцами”(Рис). Эти структуры сплошь выстилают внутреннюю поверхность мембраны митохондрии,направленную в матрикс.По образному

выражению известного исследователя биоэнергетики проф. Тихонова А.Н.,АТФ-С является “самым миниатюрным и совершенным мотором в природе”.

Рис.43 Локализация

АТФ-синтетаз в мембране мито-

хондрий(клетки животных) и хлоропластов(клетки растений).

Голубые участки -области с повышенной концентрацией Н + (кислотная зона),оранжевые участки –области с низкой концентрацией Н + .

Внизу: перенос ионов водорода Н + через мембрану при синтезе(а) и гидролизе(б) АТФ

Эффективность работы этого фермента такова, что одна молекула способна осуществить 200 циклов ферментативной активации в секунду, при этом синтезируется 600 молекул АТФ.

Интересная подробность работы этого мотора в том, что он содержит вращающиеся детали и состоит из роторной части и статора, причем, вращение ротора происходит против часовой стрелки.(Рис. 44)

Мембранная часть АТФ-С, или фактор сопряжения F 0 ,представляет собой гидрофобный белковый комплекс. Второй фрагмент АТФ-С – фактор сопряженияF 1 - выступает из мембраны в виде грибовидного образования. В митохондриях животных клеток АТФ-С встроена во внутреннюю мембрану, а комплексF 1 обращен в сторону матрикса.

Образование АТФ из АДФ и Фн происходит в каталитических центрах фактора сопряжения F 1 . Этот белок можно легко выделить из мембраны митохондрий, при этом он сохраняет способность гидролизовать молекулу АТФ, но теряет способность синтезировать АТФ. Способность синтезировать АТФ – это свойство единого комплексаF 0 F 1 в мембране митохондрии(рис1 а)Это связано с тем, что синтез АТФ в помошью АТФ-С сопряжен с транспортом через нее протонов Н + в направлении отF 0 rF 1 (рис 1 а). Движущей силой для работы АТФ-С является протонный потенциал, создаваемый дыхательной цепью транспорта электронов е - .

АТФ-С – это обратимая молекулярная машина, катализирующая как синтез, так и гидролиз АТФ. В режиме синтеза АТФ работа фермента осуществляется за счет энергии протонов Н + , переносимых под действием разности протонных потенциалов. В то же время, АТФ-С работает и как протонная помпа – за счет энергии гидролиза АТФ она перекачивает протоны из области с низким протонным потенциалом в область с высоким потенциалом (рис 1б). Сейчас уже известно, что каталитическая активность АТФ-С непосредственно связана с вращением ее роторной части. Было показано, что молекулаF 1 вращает роторный фрагмент дискретными скачками с шагом в 120 0 . Один оборот на 120 0 сопровождается гидролизом одной молекулы АТФ.

Замечательным качеством вращающегося мотора АТФ-С является его исключительно высокая КПД. Было показано, что работа, которую совершает мотор при повороте роторной части на 120 0 , почти точно совпадает с величиной энергии, запасенной в молекуле АТФ, т.е. КПД мотора близок к 100%.

В таблице приведены сравнительные характеристики нескольких типов молекулярных моторов, работающих в живых клетках. Среди них АТФ-С выделяется своими наилучшими свойствами. По эффективности работы и развиваемой ею силе она значительно превосходит все известные в природе молекулярные моторы и уж конечно – все созданные человеком.

Таблица 2 Сравнительные характеристики молекулярных моторов клеток(по: Kinoshitaetal, 1998).

Молекула F 1 комплекса АТФ-С примерно в 10 раз сильнее акто-миозинового комплекса – молекулярной машины, специализирующейся на выполнении механической работы. Таким образом, за многие миллионы лет эволюции до того, как появился человек,придумавший колесо, преимущества вращательного движения были уже реализованы природой на молекулярном уровне.

Объем работы, которую производит АТФ-С, поражает грандиозностью. Общая масса молекул АТФ синтезируемых в организме взрослого человека за сутки cоставляет около 100 кг. В этом нет ничего удивительного, поскольку в организме идут многочисленные

биохимические процессы с использованием АТФ. Поэтому, чтобы организм мог жить, его АТФ-С должны постоянно крутиться, своевременно восполняя запасы АТФ.

Яркий пример молекулярных электромоторов – работа жгутиков бактерий. Бактерии плавают со средней скоростью 25 мкм/с, а некоторые из них – со скоростью более 100 мкм/с. Это означает, что за одну секунду бактерия перемещается на расстояние в 10 и более раз большее, чем собственные размеры. Если бы пловец преодолевал за одну секунду расстояние, в десять раз больше его собственного роста б, то 100-метровую дорожку он проплывал бы за 5 секунд!

Скорость вращения электромоторов бактерий колеблется от 50-100 об/ сек до 1000 об/ сек, при этом они очень экономичны и расходуют не более 1% энергетических ресурсов клетки.

Рис 44. Схема вращения роторной субъединицы АТФ-синтетазы.

Таким образом, во внутренней мембране митохондрий локализованы как ферменты дыхательной цепи, так и синтеза АТФ.

Помимо синтеза АТФ, выделяющаяся при транспортировке электронов энергия запасается еще и в виде градиента протонов на мембране митохондрий.При этом, между наружной и внутренней мембранами возникает повышенная концентрация ионов Н + (протонов). Возникший протонный градиент из матрикса в межмембранное пространство служит движущей силой при синтезе АТФ(Рис.42). По существу,внутренняя мембрана митохондрий с встроенными АТФ-синтетазами является совершенной электростанцией на протонах, поставляющей с высокой эффективностью энергию для жизнедеятельности клетки.

При достижении определенной разности потенциалов (220 мВ) на мембране,АТФ-синтетаза начинает транспортировать протоны обратно в матрикс; при этом происходит превращение энергии протонов в энергию синтеза химических связей АТФ. Так осуществляется сопряжение окислительных процессов с синтетически-

ми в процессе фосфорилирования АДФ до АТФ.

Энергетика окислительного фосфорилирования

жиров

Еще более эффективным оказывается синтез АТФ при окислении жирных кислот и липидов. При полном окислении одной молекулы жирной кислоты, например, пальмитиновой, образуется 130 молекул АТФ. Изменение свободной энергии окисления кислоты составляет ∆G= -2340 ккал, а аккумулированная в АТФ энергия при этом составляет около 1170 ккал.

Энергетика окислительного расщепления аминокислот

Большую часть метаболической энергии, вырабатываемой в тканях, обеспечивают процессы окисления углеводов и особенно жиров; у взрослого человека до 90% всей потребности в энергии покрывается из этих двух источников. Остальную энергию (в зависимости от рациона от 10 до 15%) поставляет процесс окисления аминокислот(рис цикла Кребса).

Было подсчитано, что клетка млекопитающих содержит в среднем около 1 миллиона (10 6 ) молекул АТФ. В пересчете на все клетки тела человека (10 16 –10 17 ) это составляет 10 23 молекул АТФ. Суммарная энергия, заключенная в этой массе АТФ, может достигать значений 10 24 ккал! (1 Дж= 2,39х 10 -4 ккал). У человека весом 70 кг общее количество АТФ составляет 50 г, большая часть которого ежедневно расходуется и вновь синтезируется.

Энергия, высвобождаемая в реакциях катаболизма, запасается в виде связей, называемых макроэргическими . Основной и универсальной молекулой, запасающей энергию, являетсяАТФ .

Все молекулы АТФ в организме непрерывно участвуют в каких-либо реакциях, постоянно расщепляются до АДФ и вновь регенерируют. Существует три основных способа использования АТФ, которые вкупе с процессом образования АФ получили название АТФ-цикл .

ОСНОВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ В КЛЕТКЕ

В клетке существуют четыре основных процесса, обеспечивающих высвобождение энергии из химических связей при окислении веществ и ее запасание:

1. Гликолиз (2 этап) – окисление молекулы глюкозы до двух молекул пировиноградной кислоты, при этом образуется 2 молекулы АТФ и НАДН. Далее пировиноградная кислота в аэробных условиях превращается в ацетил-SКоА, в анаэробных условиях – в молочную кислоту.

2. β -Окисление жирных кислот (2 этап) – окисление жирных кислот до ацетил-SКоА, здесь образуются молекулы НАДН и ФАДН2 . Молекул АТФ "в чистом виде" не образуется.

3. Цикл трикарбоновых кислот (ЦТК, 3 этап) – окисление ацетильной группы (в составе ацетил-SКоА) или иных кетокислот до углекислого газа. Реакции полного цикла со-

провождаются образованием 1 молекулы ГТФ (что эквивалентно одной АТФ), 3 молекул НАДН и 1 молекулы ФАДН2 .

4. Окислительное фосфорилирование (3 этап) – окисляютсяНАДН и ФАДН 2 , полу-

ченные в реакциях катаболизма глюкозы и жирных кислот. При этом ферменты внутренней мембраны митохондрий обеспечивают образование основного количества клеточного АТФ из АДФ (фосфорилирование ).

Основным способом получения АТФ в клетке является окислительное фосфорилирование. Однако также есть другой способ фосфорилирования АДФ до АТФ – субстратное фосфорилирование . Этот способ связан с передачей макроэргического фосфата или энергии макроэргической связи какого-либо вещества (субстрата) на АДФ. К таким веществам отно-

сятся метаболиты гликолиза (1,3-дифосфоглицериновая кислота, фосфоенолпируват),

цикла трикарбоновых кислот (сукцинил-SКоА ) икреатинфосфат . Энергия гидролиза их макроэргической связи выше, чем в АТФ (7,3 ккал/моль), и роль этих веществ сводится к использованию для фосфорилирования АДФ.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама