THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Метод наименьших квадратов (МНК) позволяет оценивать различные величины, используя результаты множества измерений, содержащих случайные ошибки.

Характеристика МНК

Основная идея данного метода состоит в том, что в качестве критерия точности решения задачи рассматривается сумма квадратов ошибок, которую стремятся свести к минимуму. При использовании этого метода можно применять как численный, так и аналитический подход.

В частности, в качестве численной реализации метод наименьших квадратов подразумевает проведение как можно большего числа измерений неизвестной случайной величины. Причем, чем больше вычислений, тем точнее будет решение. На этом множестве вычислений (исходных данных) получают другое множество предполагаемых решений, из которого затем выбирается наилучшее. Если множество решений параметризировать, то метод наименьших квадратов сведется к поиску оптимального значения параметров.

В качестве аналитического подхода к реализации МНК на множестве исходных данных (измерений) и предполагаемом множестве решений определяется некоторая (функционал), которую можно выразить формулой, получаемой в качестве некоторой гипотезы, требующей подтверждения. В этом случае метод наименьших квадратов сводится к нахождению минимума этого функционала на множестве квадратов ошибок исходных данных.

Заметьте, что не сами ошибки, а именно квадраты ошибок. Почему? Дело в том, что зачастую отклонения измерений от точного значения бывают как положительными, так и отрицательными. При определении средней простое суммирование может привести к неверному выводу о качестве оценки, поскольку взаимное уничтожение положительных и отрицательных значений понизит мощность выборки множества измерений. А, следовательно, и точность оценки.

Для того чтобы этого не произошло, и суммируют квадраты отклонений. Даже более того, чтобы выровнять размерность измеряемой величины и итоговой оценки, из суммы квадратов погрешностей извлекают

Некоторые приложения МНК

МНК широко используется в различных областях. Например, в теории вероятностей и математической статистике метод используется для определения такой характеристики случайной величины, как среднее квадратическое отклонение, определяющей ширину диапазона значений случайной величины.

Метод наименьших квадратов - это математическая процедура составления линейного уравнения, максимально соответствующего набору упорядоченных пар, путем нахождения значений для a и b, коэффициентов в уравнении прямой. Цель метода наименьших квадратов состоит в минимизации общей квадратичной ошибки между значениями y и ŷ. Если для каждой точки мы определяем ошибку ŷ, метод наименьших квадратов минимизирует:

где n = число упорядоченных пар вокруг линии. максимально соответствующей данным.

Это понятие проиллюстрировано на рисунке

Судя по рисунку, линия, максимально соответствующая данным, линия регрессии, минимизирует общую квадратичную ошибку четырех точек на графике. Я покажу вам, как определять это с помощью метода наименьших квадратов на следующем примере.

Представьте себе молодую пару, которые, с недавних пор, живут вместе и совместно делят столик для косметических принадлежностей в ванной. Молодой человек начал замечать, что половина его столика неумолимо сокращается, сдавая свои позиции муссам для волос и соевым комплексам. За последние несколько месяцев парень внимательно следил за тем, с какой скоростью увеличивается число предметов на ее части стола. В таблице ниже представлено число предметов девушки на столике в ванной, накопившихся за последние несколько месяцев.

Поскольку своей целью мы определили задачу узнать, увеличивается ли со временем число предметов, «Месяц» будет независимой переменной, а «Число предметов» - зависимой.

С помощью метода наименьших квадратов определяем уравнение, максимально соответствующее данным, путем вычисления значений a, отрезка на оси y, и b, наклона линии:

a = y ср — bx ср

где x ср — среднее значение x, независимой переменной, y ср — среднее значение y, независимой переменной.

В таблице ниже суммированы необходимые для этих уравнений вычисления.

Кривая эффекта для нашего примера с ванной будет определяться следующим уравнением:

Поскольку наше уравнение имеет положительный наклон - 0.976, парень имеет доказательство того, что число предметов на столике со временем увеличивается со средней скоростью 1 предмет в месяц. На графике представлена кривая эффекта с упорядоченными парами.

Ожидание в отношении числа предметов в течение следующего полугода (месяца 16) будет вычисляться так:

ŷ = 5.13 + 0.976x = 5.13 + 0.976(16) ~ 20.7 = 21 предмет

Так что, пора нашему герою предпринимать какие-нибудь действия.

Функция ТЕНДЕНЦИЯ в Excel

Как вы уже, наверное, догадались в Excel имеется функция для расчета значения по методу наименьших квадратов. Это функция называется ТЕНДЕНЦИЯ. Синтаксис у нее следующий:

ТЕНДЕНЦИЯ (известные значения Y; известные значения X; новые значения X; конст)

известные значения Y – массив зависимых переменных, в нашем случае, количество предметов на столике

известные значения X – массив независимых переменных, в нашем случае это месяц

новые значения X – новые значения X (месяца) для которого функция ТЕНДЕНЦИЯ возвращает ожидаемое значение зависимых переменных (количество предметов)

конст — необязательный. Логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0.

Например, на рисунке показана функция ТЕНДЕНЦИЯ, используемая для определения ожидаемого количества предметов на столике в ванной для 16-го месяца.

3. Аппроксимация функций с помощью метода

наименьших квадратов

Метод наименьших квадратов применяется при обработке результатов эксперимента для аппроксимации (приближения) экспериментальных данных аналитической формулой. Конкретный вид формулы выбирается, как правило, из физических соображений. Такими формулами могут быть:

и другие.

Сущность метода наименьших квадратов состоит в следующем. Пусть результаты измерений представлены таблицей:

Таблица 4

x n

y n

(3.1)

где f - известная функция, a 0 , a 1 , …, a m - неизвестные постоянные параметры, значения которых надо найти. В методе наименьших квадратов приближение функции (3.1) к экспериментальной зависимости считается наилучшим, если выполняется условие

(3.2)

то есть сумм a квадратов отклонений искомой аналитической функции от экспериментальной зависимости должна быть минимальна .

Заметим, что функция Q называется невязкой.


Так как невязка

то она имеет минимум. Необходимым условием минимума функции нескольких переменных является равенство нулю всех частных производных этой функции по параметрам. Таким образом, отыскание наилучших значений параметров аппроксимирующей функции (3.1), то есть таких их значений, при которых Q = Q (a 0 , a 1 , …, a m ) минимальна, сводится к решению системы уравнений:

(3.3)

Методу наименьших квадратов можно дать следующее геометрическое истолкование: среди бесконечного семейства линий данного вида отыскивается одна линия, для которой сумма квадратов разностей ординат экспериментальных точек и соответствующих им ординат точек, найденных по уравнению этой линии, будет наименьшей.

Нахождение параметров линейной функции

Пусть экспериментальные данные надо представить линейной функцией:

Требуется подобрать такие значения a и b , для которых функция

(3.4)

будет минимальной. Необходимые условия минимума функции (3.4) сводятся к системе уравнений:

После преобразований получаем систему двух линейных уравнений с двумя неизвестными:

(3.5)

решая которую , находим искомые значения параметров a и b .

Нахождение параметров квадратичной функции

Если аппроксимирующей функцией является квадратичная зависимость

то её параметры a , b , c находят из условия минимума функции:

(3.6)

Условия минимума функции (3.6) сводятся к системе уравнений:


После преобразований получаем систему трёх линейных уравнений с тремя неизвестными:

(3.7)

при решении которой находим искомые значения параметров a , b и c .

Пример . Пусть в результате эксперимента получена следующая таблица значений x и y :

Таблица 5

y i

0,705

0,495

0,426

0,357

0,368

0,406

0,549

0,768

Требуется аппроксимировать экспериментальные данные линейной и квадратичной функциями.

Решение. Отыскание параметров аппроксимирующих функций сводится к решению систем линейных уравнений (3.5) и (3.7). Для решения задачи воспользуемся процессором электронных таблиц Excel .

1. Сначала сцепим листы 1 и 2. Занесём экспериментальные значения x i и y i в столбцы А и В, начиная со второй строки (в первой строке поместим заголовки столбцов). Затем для этих столбцов вычислим суммы и поместим их в десятой строке.

В столбцах C – G разместим соответственно вычисление и суммирование

2. Расцепим листы.Дальнейшие вычисления проведём аналогичным образом для линейной зависимости на Листе 1и для квадратичной зависимости на Листе 2.

3. Под полученной таблицей сформируем матрицу коэффициентов и вектор-столбец свободных членов. Решим систему линейных уравнений по следующему алгоритму:

Для вычисления обратной матрицы и перемножения матриц воспользуемся Мастером функций и функциями МОБР и МУМНОЖ .

4. В блоке ячеек H2: H 9 на основе полученных коэффициентов вычислим значенияаппроксимирующего полинома y i выч ., в блоке I 2: I 9 – отклонения D y i = y i эксп . - y i выч .,в столбце J – невязку:

Полученные таблицы и построенные с помощью Мастера диаграмм графики приведёны на рисунках6, 7, 8.


Рис. 6. Таблица вычисления коэффициентов линейной функции,

аппроксимирующей экспериментальные данные.


Рис. 7. Таблица вычисления коэффициентов квадратичной функции,

аппроксимирующей экспериментальные данные.


Рис. 8. Графическое представление результатов аппроксимации

экспериментальных данных линейной и квадратичной функциями.

Ответ. Аппроксимировали экспериментальные данные линейной зависимостью y = 0,07881 x + 0,442262 c невязкой Q = 0,165167 и квадратичной зависимостью y = 3,115476 x 2 – 5,2175 x + 2,529631 c невязкой Q = 0,002103 .

Задания. Аппроксимировать функцию, заданную таблично, линейной и квадратичной функциями.

Таблица 6

№0

x

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

y

3,030

3,142

3,358

3,463

3,772

3,251

3,170

3,665

1

3,314

3,278

3,262

3,292

3,332

3,397

3,487

3,563

2

1,045

1,162

1,264

1,172

1,070

0,898

0,656

0,344

3

6,715

6,735

6,750

6,741

6,645

6,639

6,647

6,612

4

2,325

2,515

2,638

2,700

2,696

2,626

2,491

2,291

5

1.752

1,762

1,777

1,797

1,821

1,850

1,884

1,944

6

1,924

1,710

1,525

1,370

1,264

1,190

1,148

1,127

7

1,025

1,144

1,336

1,419

1,479

1,530

1,568

1,248

8

5,785

5,685

5,605

5,545

5,505

5,480

5,495

5,510

9

4,052

4,092

4,152

4,234

4,338

4,468

4,599

Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.

Аппроксимирующая кривая, построенная по методу наименьших квадратов

Метод наименьших квадратов используется:

Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

Для аппроксимации точечных значений некоторой аппроксимирующей функцией.

Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

Значения расчетной аппроксимирующей функции в узловых точках ,

Заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

- неизвестные коэффициенты аппроксимирующего многочлена степени m;

Количество заданных табличных значений.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным . В результате получим следующую систему уравнений:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.

Аппроксимация исходных данных линейной зависимостью

(линейная регрессия)

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Координаты узловых точек таблицы;

Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Преобразуем полученную линейную систему уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

1. Начальные данные:

Задан массив экспериментальных данных с количеством измерений N

Задана степень аппроксимирующего многочлена (m)

2. Алгоритм вычисления:

2.1. Определяются коэффициенты для построения системы уравнений размерностью

Коэффициенты системы уравнений (левая часть уравнения)

- индекс номера столбца квадратной матрицы системы уравнений

Свободные члены системы линейных уравнений (правая часть уравнения)

- индекс номера строки квадратной матрицы системы уравнений

2.2. Формирование системы линейных уравнений размерностью .

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Логарифмическая аппроксимация

Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида:

Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости Y от Х (или Х от У), например, линейную модель y x =a+bx, необходимо определить конкретные значения коэффициентов модели.

При различных значениях а и b можно построить бесконечное число зависимостей вида y x =a+bx т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.

Линейную функцию a+bx ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используем метод наименьших квадратов.

Обозначим: Y i - значение, вычисленное по уравнению Y i =a+bx i . y i - измеренное значение, ε i =y i -Y i - разность между измеренными и вычисленными по уравнению значениям, ε i =y i -a-bx i .

В методе наименьших квадратов требуется, чтобы ε i , разность между измеренными y i и вычисленными по уравнению значениям Y i , была минимальной. Следовательно, находим коэффициенты а и b так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:

Исследуя на экстремум эту функцию аргументов а и с помощью производных, можно доказать, что функция принимает минимальное значение, если коэффициенты а и b являются решениями системы:

(2)

Если разделить обе части нормальных уравнений на n, то получим:

Учитывая, что (3)

Получим , отсюда , подставляя значение a в первое уравнение, получим:

При этом b называют коэффициентом регрессии; a называют свободным членом уравнения регрессии и вычисляют по формуле:

Полученная прямая является оценкой для теоретической линии регрессии. Имеем:

Итак, является уравнением линейной регрессии.

Регрессия может быть прямой (b>0) и обратной (b Пример 1. Результаты измерения величин X и Y даны в таблице:

x i -2 0 1 2 4
y i 0.5 1 1.5 2 3

Предполагая, что между X и Y существует линейная зависимость y=a+bx, способом наименьших квадратов определить коэффициенты a и b.

Решение. Здесь n=5
x i =-2+0+1+2+4=5;
x i 2 =4+0+1+4+16=25
x i y i =-2 0.5+0 1+1 1.5+2 2+4 3=16.5
y i =0.5+1+1.5+2+3=8

и нормальная система (2) имеет вид

Решая эту систему, получим: b=0.425, a=1.175. Поэтому y=1.175+0.425x.

Пример 2. Имеется выборка из 10 наблюдений экономических показателей (X) и (Y).

x i 180 172 173 169 175 170 179 170 167 174
y i 186 180 176 171 182 166 182 172 169 177

Требуется найти выборочное уравнение регрессии Y на X. Построить выборочную линию регрессии Y на X.

Решение. 1. Проведем упорядочивание данных по значениям x i и y i . Получаем новую таблицу:

x i 167 169 170 170 172 173 174 175 179 180
y i 169 171 166 172 180 176 177 182 182 186

Для упрощения вычислений составим расчетную таблицу, в которую занесем необходимые численные значения.

x i y i x i 2 x i y i
167 169 27889 28223
169 171 28561 28899
170 166 28900 28220
170 172 28900 29240
172 180 29584 30960
173 176 29929 30448
174 177 30276 30798
175 182 30625 31850
179 182 32041 32578
180 186 32400 33480
∑x i =1729 ∑y i =1761 ∑x i 2 299105 ∑x i y i =304696
x=172.9 y=176.1 x i 2 =29910.5 xy=30469.6

Согласно формуле (4), вычисляем коэффициента регрессии

а по формуле (5)

Таким образом, выборочное уравнение регрессии имеет вид y=-59.34+1.3804x.
Нанесем на координатной плоскости точки (x i ; y i) и отметим прямую регрессии.


Рис 4

На рис.4 видно, как располагаются наблюдаемые значения относительно линии регрессии. Для численной оценки отклонений y i от Y i , где y i наблюдаемые, а Y i определяемые регрессией значения, составим таблицу:

x i y i Y i Y i -y i
167 169 168.055 -0.945
169 171 170.778 -0.222
170 166 172.140 6.140
170 172 172.140 0.140
172 180 174.863 -5.137
173 176 176.225 0.225
174 177 177.587 0.587
175 182 178.949 -3.051
179 182 184.395 2.395
180 186 185.757 -0.243

Значения Y i вычислены согласно уравнению регрессии.

Заметное отклонение некоторых наблюдаемых значений от линии регрессии объясняется малым числом наблюдений. При исследовании степени линейной зависимости Y от X число наблюдений учитывается. Сила зависимости определяется величиной коэффициента корреляции.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама