THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Химия - это наука о веществе (предмет, имеющий массу и занимающий какой-то объем).

Химия исследует строение и свойства вещества, а также происходящих с ним изменений.

Любое вещество бывает либо в чистом виде, либо состоит из смеси чистых веществ. Вследствие химически реакций вещества могут превращаться в новое вещество.

Химия очень обширная наука. Поэтому, принято выделять отдельные разделы химии:

  • Аналитическая химия. Делает количественный анализ (сколько вещества содержится) и качественный анализ (какие вещества содержатся) смесей.
  • Биохимия . Изучает химические реакции в живых организмах: пищеварение, размножение, дыхание, обмен веществ… Как правило, изучение ведется на молекулярном уровне.
  • Неорганическая химия. Изучает все элементы (структуру и свойства соединений) периодической таблицы Менделеева за исключением углерода.
  • Органическая химия. Это химия соединений углерода. Известны миллионы органических соединений, которые используются в нефтехимии, фармацевтике, производстве полимеров.
  • Физическая химия. Изучает физические явления и закономерности химических реакций.

Этапы развития химии, как науки

Химические процессы (получение металлов из руд, крашение тканей, выделка кожи...) использовались человечеством уже на заре его культурной жизни.

В 3-4 веках зародилась алхимия , задачей которой было превращение неблагородных металлов в благородные.

С эпохи Возрождения химические исследования все в большей степени стали использовать для практических целей (металлургия, стеклоделие, производство керамики, красок...); возникло также особое медицинское направление алхимии - ятрохимия .

Во второй половине 17 века Р. Бойль дал первое научное определение понятия «химический элемент» .

Период превращения химии в подлинную науку завершился во второй половине 18 века, когда был сформулирован закон сохранения массы при химических реакциях.

В начале 19 века Джон Дальтон заложил основы химической атомистики, Амедео Авогардо ввел понятие «молекула» . Эти атомно-молекулярные представления утвердились лишь в 60-х годах 19 века. Тогда же А.М. Бутлеров создал теорию строения химических соединений, а Д.И. Менделеев открыл периодический закон.

«Химия - наука, изучающая свойства и превращения веществ, сопровождающиеся изменением их состава и строения». Она изучает природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов и т.д. Своеобразную программу исследования химических явлений впервые сформулировали и приняли ученые химики на первом Международном съезде химиков в в Германии в 1860 г. Они исходили из того, что: - все вещества состоят из молекул, которые находятся в непрерывном и самопроизвольном движении; - все молекулы состоят из атомов; - атомы и молекулы находятся в непрерывном движении; - атомы представляют собой мельчайшие, далее неделимые составные части молекул.

Химия - это одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения.

Химия - наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо, и почему олово не ржавеет; что происходит с пищей в организме; почему раствор соли проводит электрический ток, а раствор сахара - нет; почему одни химические изменения происходят быстро, а другие - медленно.

Химия - греч., наука, занимающаяся изучением состава тел; она учит, из каких простых веществ (химич. элементов) состоят тела, как их можно разложить (хим. анализ) на составные части и получить снова из этих составных частей (хим. синтез).

Химия - Наука о составе, строении, изменениях и превращениях, а также об образовании новых простых и сложных веществ. Химию, говорит Энгельс, можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава.

Химия.- греч. наука о разложении и составлении веществ, тел, об отыскании неразлагаемых стихий, основ.

Химический взгляд на природу, истоки и современное состояние.

Химия - очень древняя наука. Существует несколько объяснений слова «химия». Согласно одной из имеющихся теорий, оно происходит от древнего названия Египта - Kham и, следовательно, должно означать «египетское искусство». Согласно другой теории, слово «химия» произошло от греческого слова cumoz (сок растения) и означает «искусство выделения соков». Этот сок может быть расплавленным металлом, так что при подобном расширенном толковании данного термина в него приходится включать и искусство металлургии.

Предмет химии - химические элементы и их соединения, а также закономерности, которым подчиняются различные химические реакции. Химию, иногда называют центральной наукой из-за ее особого положения среди естественных наук. Она соединяет физико-математические и биолого-социальные науки. Это делает химию «наукой-гигантом». Современная химия является самой обширной среди всех естественных наук.



По определению Д. И. Менделеева Дмитрия Ивановича (1871), "химию в современном ее состоянии можно... назвать учением об элементах".Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта - Хемия (греч. Chemía, встречается у Плутарха), которое производится от "хем" или "хаме" - чёрный и означает "наука чёрной земли" (Египта), "египетская наука".

Главная задача химии - выяснение природы вещества, главный подход к решению этой задачи - разложение вещества на более простые компоненты и синтез новых веществ. Используя этот подход, химики научились воспроизводить множество природных химических субстанций и создавать материалы, не существующие в природе. На химических предприятиях уголь, нефть, руды, вода, кислород воздуха превращаются в моющие средства и красители, пластики и полимеры, лекарства и металлические сплавы, удобрения, гербициды и инсектициды и т.д. Живой организм тоже можно рассматривать как сложнейший химический завод, на котором тысячи веществ вступают в совершенно точно отрегулированные химические реакции.

Современная химия представляет собой широкий комплекс наук, постепенно сложившийся в ходе ее длительного исторического развития. Практическое знакомство человека с химическими процессами восходит к глубокой древности. В течение многих столетий теоретическое объяснение химических процессов основывалось на натурфилософском учении об элементах-качествах. В модифицированном виде оно послужило основой для алхимии, возникшей примерно в III-IV вв. н.э. и стремившейся решить задачу превращения неблагородных металлов в благородные. Не добившись успеха в решении этой задачи, алхимики, тем не менее, выработали ряд приемов исследования веществ, открыли некоторые химические соединения, чем в определенной степени способствовали возникновению научной химии.

Важнейшие особенности современной химии таковы.

1. В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия).

2. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия - закономерности поведения химических элементов в земной коре. Биогеохимия - это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский. Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам.

3. В химии появляются принципиально новые методы исследования (структурный рентгеновский анализ, масс-спектроскопия, радиоспектроскопия и др.).

Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными: 1) введение в практику эфирного наркоза, а затем и других наркотических веществ; 2) использование антисептических средств для предупреждения инфекции; 3) получение новых, не имеющихся в природе аллопластических материалов-полимеров.

В химии весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) - это органические соединения. В их основе лежат 18 элементов), и большее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство.

Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение.

Современная химия изучает превращения, при которых молекулы одного соединения обмениваются атомами с молекулами других соединений, распадаются на молекулы с меньшим числом атомов, а также вступают в химические реакции, в результате которых образуются новые вещества. Атомы претерпевают в химических процессах некоторые изменения лишь в наружных электронных оболочках, атомное ядро и внутренние электронные оболочки при этом не изменяются.

При определении предмета химии нередко акцентируют внимание на том, что его составляют, прежде всего, соединения атомов и превращения этих соединений, происходящее с разрывом одних и образованием других межатомных связей.

Различные химические науки отличаются тем, что они занимаются изучением либо различных классов соединений (такое различие положено в основу разграничения органической и неорганической химии), либо разных типов реакций (радиохимия, радиационная химия, каталитический синтез, химия полимеров), либо использованием разных методов исследования (физическая химия в ее различных направлениях). Отграничение одной химической дисциплины от другой, сохраняющее в нынешних условиях исторически сложившиеся разграничительные линии, имеет относительный характер.

До конца XIX века химия в основном была целостной единой наукой. Внутреннее ее деление на органическую и неорганическую не нарушало этого единства. Но последовавшие вскоре многочисленные открытия, как в самой химии, так и в биологии, физике положили начало быстрой ее дифференциации.

Современная химическая наука, опираясь в» прочные теоретические основы, непрерывно развивается вширь и вглубь. В частности, происходит открытие и изучение новых, качественно различных дискретных химических частиц. Так, еще в первой половине XIX века при изучении электролиза были обнаружены ионы - особые частицы, образованные из атомов и молекул, но электрически заряженные. Ионы являются структурными единицами многих кристаллов, кристаллических решеток металлов, они существуют в атмосфере, в растворах и т.д.

В начале XX в. химики открыли радикалы как одну из активных форм химического вещества. Они образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, что связано с наличием одиночных (неспаренных) электронов, объясняющих их исключительную химическую активность.

К особым формам химического вещества относятся также макромолекулы. Они состоят из сотен и тысяч атомов и вследствие этого приобретают в отличие от обычной молекулы качественно новые свойства.

Характерный для новейшей химии, как и для всей науки XX в., процесс глубокой внутренней дифференциации в значительной степени связан с открытием этого качественного многообразия химических веществ. Их строение, превращения и свойства стали предметом изучения специальных разделов химии: электрохимии, химической кинетики, химии полимеров, химии комплексных соединений, коллоидной химии, химии высокомолекулярных соединений.

Уже к началу XX в. внутри самой химии четко различаются общая и неорганическая химия, и органическая химия. Предметом изучения общей и тесно связанной с ней неорганической химии стали химические элементы, образуемые ими простейшие неорганические соединения и их общие законы (прежде всего Периодический закон Д.И. Дмитрия Ивановича Менделеева).

Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизученных и синтезу новых элементов с помощью ядерных реакций. Изучением их свойств, а также физико-химических основ и химических свойств радиоактивных изотопов, методикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX в.

Органическая химия окончательно сложилась в самостоятельную науку во второй половине XIXв. Этому способствовало получение большого эмпирического и теоретического материала о соединениях углерода и его производных. Определяющим фактором для всех органических соединений являются особенности валентного состояния углерода - способность его атомов связываться между собой как одинарной, так и двойной, тройной связью в длинные линейные и разветвленные цепи. Благодаря бесконечному многообразию форм сцепления углеродных атомов, наличию изомерии и гомологических рядов почти во всех классах органических соединений возможности получения этих соединений практически безграничны.

В XX в. многие разделы органической химии стали постепенно превращаться в большие, относительно самостоятельные ветви со своими объектами изучения. Так появились химия элементоорганических соединений, химия полимеров, химия высокомолекулярных соединений, химия антибиотиков, красителей, душистых соединений, фармакохимия и т.д.

В конце XX в. возникает химия металлоорганических соединений, то есть соединений, содержащих одну (или более) прямую связь металла с углеродом. До окончания века были открыты органические соединения ртути, кадмия, цинка, свинца и др. В настоящее время получены углеродистые соединения со значительным содержанием не только металлов, но и неметаллов (фосфор, бур, кремний, мышьяк и т.д.). Теперь эту область химии стали называть химией элементоорганических соединений, она находится на стыке органической и неорганической химии.

Самостоятельной областью химии является наука о методах определения состава вещества - аналитическая химия. Ее основная задача - определение химических элементов или их соединений, входящих в состав исследуемого вещества, - решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, эффективный постоянный контроль за ходом технологического процесса и качеством получаемых продуктов.

Химия наших дней составляет одну из наиболее обширных областей человеческих знаний и играет исключительно важную роль в народном хозяйстве. Объекты и методы исследования химии настолько разнообразны, что многие ее разделы являются по существу самостоятельными научными дисциплинами. Современную химию принято подразделять в наиболее общем плане, по крайней мере, на 5 разделов: неорганическую, органическую, физическую, аналитическую и химию высокомолекулярных соединений. Однако четких границ между этими разделами не существует. Например, координационные и элементоорганические соединения представляют собой объекты, находящиеся в сфере исследований, как неорганической, так и органической химии. Развитие же этих разделов невозможно без широкого использования методов и представлений физической и аналитической химии.

К важнейшим особенностям современной химии относятся:

1. Дифференциация основных разделов химии на отдельные, во многом самостоятельные научные дисциплины. Эта дифференциация основана на различии объектов и методов исследования. Так, на значительное число быстро развивающихся дисциплин подразделяется физическая химия.

2. Интеграция химии с другими науками. В результате этого процесса возникли биохимия, биоорганическая химия и молекулярная биология, изучающие химические процессы в живых организмах. На границе химии и геологии развивается геохимия, исследующая закономерности поведения химических элементов в земной коре. Задачи космохимии - изучение особенностей элементного состава космических тел (планет и метеоритов) и различных соединений, содержащихся в этих объектах.

3. Появление новых, главным образом, физико-химических в физических методов исследования (структурный рентгеновский анализ, масс-спектроскопия, методы радиоспектроскопии и др.)

Взаимосвязь химии и физики

Наряду с процессами дифференциации самой химической науки, в настоящее время идут в интеграционные процессы химии с другими отраслями естествознания. Особенно интенсивно развиваются взаимосвязи между физикой и химией. Этот процесс сопровождается возникновением все новых и новых смежных физико-химических отраслей знания.

Вся история взаимодействия химии я физики полна примеров обмена идеями, объектами и методами исследования. На разных этапах своего развития физика снабжала химию понятиями в теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом, чем больше усложнялись химические исследования, тем больше аппаратура и методы расчетов физики проникали в химию. Необходимость измерения тепловых эффектов реакции, развитие спектрального и рентгеноструктурного анализа, изучение изотопов и радиоактивных химических элементов, кристаллических решеток вещества, молекулярных структур потребовали создания и привели к использованию сложнейших физических приборов эспектроскопов, масс-спектрографов, дифракционных решеток, электронных микроскопов и т.д.

Развитие современной науки подтвердило глубокую связь между физикой и химией. Связь эта носит генетический характер, то есть образование атомов химических элементов, соединение их в молекулы вещества произошло на определенном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов материи, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Возникновение химической формы движения в природе вызвало дальнейшее развитие представлений об электромагнитном взаимодействии, изучаемом физикой. На основе периодического закона ныне осуществляется прогресс не только в химии, но и в ядерной физике, на границе которой возникли такие смешанные физико-химические теории, как химия изотопов, радиационная химия.

Химия и физика изучают практически одни и те же объекты, но только каждая из них видит в этих объектах свою сторону, свой предмет изучения. Так, молекула является предметом изучения не только химии, но и молекулярной физики. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы, то последняя статистически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазы и обратно, явления, не связанные с изменением состава молекул и их внутреннего химического строения. Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах убедительно свидетельствуют о тесной связи химических и физических явлений. Так, энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии обычно в виде тепла и света, называются экзотермическими. Существуют также эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновременно с уменьшением внутренней энергии системы. В эндотермических реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль).

Еще один пример. Частным случаем первого начала термодинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измерение почему-либо неосуществимо.

С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказалось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней оболочки, Именно новейшая физика сумела решить такие вопросы химии, как природа химической связи, особенности химического строения молекул органических и неорганических соединений и т.д.

В сфере соприкосновения физики и химии возник и успешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, которая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева Дмитрия Ивановича (открытие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролитической диссоциации) и т.д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия - это разносторонне разветвленная наука, тесно связывающая физику и химию.

В самой физической химии к настоящему времени выделились и вполне сложились в качестве самостоятельных разделов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в самостоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с интенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической химии - химия высоких энергий, радиационная химия (предметом ее изучения являются реакции, протекающие под действием ионизирующего излучения), химия изотопов.

Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической химии. С возникновением физической химии изучение вещества стало осуществляться не только традиционными химическими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодинамики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, присущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.).

Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (квантовая механика, электронная теория атомов и молекул) наука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химических элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи.

В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обеспечило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия граничит, с одной стороны, с макроскопической физикой - термодинамикой, физикой сплошных сред, а с другой - с микрофизикой - статической физикой, квантовой механикой.

Общеизвестно, сколь плодотворными эти контакты оказались для химии. Термодинамика породила химическую термодинамику - учение о химических равновесиях. Статическая физика легла в основу химической кинетики - учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Дмитрия Ивановича Менделеева. Современная теория химического строения и реакционной способности - это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превращений.

Еще одним свидетельством плодотворности влияния физики на химическую науку является все расширяющееся применение физических методов в химических исследованиях. Поразительный прогресс в этой области особенно отчет-диво виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область видимого и примыкающего к нему участков инфракрасного и ультрафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее информативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального метода изучения нестабильных промежуточных частиц - свободных радикалов. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии.

Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры - уникальные по своей спектральной интенсивности источники - и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс - быстро развивающийся высокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность - это штучная регистрация атомов с помощью лазера - методика, основная на селективном возбуждении, позволяющая зарегистрировать в кювете всего несколько атомов посторонней при-Л0еи. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер.

Сейчас трудно назвать область современной физики, которая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных частиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое поведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправдывает этот интерес.

Взаимосвязь химии и биологии

Общеизвестно, что химия и биология долгое время шли каждая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма.

Резкое укрепление взаимосвязи химии с биологией произошло в результате создания А.М. Бутлеровым теория химического строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось.

Значение химии среди наук, изучающих жизнь, исключительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов.

Другие науки, возникшие на стыке биологии, химии и физики: биохимия - наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия - наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология.

Ныне для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. На этом пути есть уже определенные достижения.

В настоящее время уже видны перспективы возникновения и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии.

Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химическими, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей, использующих с большим КПД солнечный свет, превращая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности.

Для освоения каталитического опыта живой природы и реализации полученных знаний в индексе пром. производства химики наметили рад перспективных путей.

Первый - развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа.

Второй путь заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов характеризующихся высокой активностью и селективностью, иногда" почти такой же, как и у оригиналов, или с большей простотой строения.

Разделы современной химии

Современная химия - настолько обширная область естествознания, что многие её разделы по существу представляют собой самостоятельные, хотя и тесно взаимосвязанные научные дисциплины.

По признаку изучаемых объектов (веществ) химию принято делить на неорганическую и органическую. Объяснением сущности химических явлений и установлением их общих закономерностей на основе физических принципов и экспериментальных данных занимается физическая химия, включающая квантовую химию, электрохимию, химическую термодинамику, химическую кинетику. Самостоятельными разделами являются также аналитическая и коллоидная химия (см. ниже перечень разделов).

Технологические основы современных производств излагает химическая технология - наука об экономичных методах и средствах промышленной химической переработки готовых природных материалов и искусственного получения химических продуктов, не встречающихся в окружающей природе.

Сочетание химии с другими смежными естественными науками представляют собой биохимия, биоорганическая химия, геохимия, радиационная химия, фотохимия и др.

Общенаучные основы химических методов разрабатываются в теории познания и методологии науки.

Агрохимия

Аналитическая химия занимается изучением веществ с целью получить представление об их химическом составе и структуре, в рамках этой дисциплины ведётся разработка экспериментальных методов химического анализа.

Биоорганическая химия

Биохимия изучает химические вещества, их превращения и явления, сопровождающие эти превращения в живых организмах. Тесно связана с органической химией, химией лекарственных средств, нейрохимией, молекулярной биологией и генетикой.

Вычислительная химия

Геохимия - наука о химическом составе Земли и планет (космохимия), законах распределения элементов и изотопов, процессах формирования горных пород, почв и природных вод.

Квантовая химия

Коллоидная химия

Компьютерная химия

Косметическая химия

Космохимия

Математическая химия

Материаловедение

Металлоорганическая химия

Неорганическая химия изучает свойства и реакции неорганических соединений. Чёткой границы между органической и неорганической химии нет, напротив, существуют дисциплины на стыке этих наук, например, металлоорганическая химия.

Органическая химия выделяет в качестве предмета изучения вещества, построенные на основе углеродного скелета.

Нейрохимия своим предметом имеет изучение медиаторов, пептидов, белков, жиров, сахара и нуклеиновых кислот, их взаимодействия и роли, которую они играют в формировании, становлении и изменении нервной системы.

Нефтехимия

Общая химия

Препаративная химия

Радиохимия

Супрамолекулярная химия

Теоретическая химия

Фармацевтика

Физическая химия изучает физический и фундаментальный базис химических систем и процессов. Важнейшие области исследования включают химическую термодинамику, кинетику, электрохимию, статистическую механику и спектроскопию. Физическая химия имеет много общего с молекулярной физикой. Физическая химия предполагает использование инфинитезимального метода. Физическая химия является отдельной дисциплиной от химической физики.

Фотохимия

Химия высокомолекулярных соединений

Химия одноуглеродных молекул

Химия полимеров

Химия почв

Теоретическая химия своей задачей ставит теоретическое обобщение и обоснование знаний химии через фундаментальные теоретические рассуждения (как правило, в области математики или физики).

Термохимия

Токсикологическая химия

Электрохимия

Экологическая химия; химия окружающей среды

Ядерная химия изучает ядерные реакции и химические последствия ядерных реакций.

Химический элемент, простое и сложное вещество, аллотропия. Относительная атомная и молекулярная массы, моль, молярная масса. Валентность, степень окисления, химическая связь, структурная формула.


Практикум: Расчеты по химическим формулам, химическим уравнениям.Решение задач на нахождение химической формулы вещества. Решение задач с использованием понятия «молярная масса». Вычисления по химическим уравнениям, если одно из веществ взято в избытке, если одно из веществ содержит примеси. Решение задач на определение выхода продукта реакции.


Химия - это наука о веществах, их свойствах и превращениях, происходящих в результате химических реакций, а также о фундаментальных законах, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий.


Химический элемент - определённый вид атома имеющий название, порядковый номер, и положение в таблице Менделеева называют химическим элементом. В настоящее время известно 118 химических элементов, заканчивая Uuo (Ununoctium - Унуноктий). Каждый элемент обозначен символом, который представляет одну или две буквы из его латинского названия (водород обозначен буквой H - первой буквой его латинского названия Hydrogenium).


Вещество - вид материи с определёнными химическими и физическими свойствами. Совокупность атомов, атомных частиц или молекул, находящаяся в определённом агрегатном состоянии. Из веществ состоят физические тела (медь - вещество, а медная монета - физическое тело).


Простое вещество - вещество, состоящее из атомов одного химического элемента: водород, кислород и т.д.


Сложное вещество - вещество, состоящее из атомов разных химических элементов: кислоты, вода и др.


Аллотропия - это способность некоторых химических элементов существовать в виде двух или нескольких простых веществ, различных по строению и свойствам. Например: алмаз и уголь состоят из одного и того же элемента - углерода.

Относительная атомная масса. Относительной атомной массой элемента называют отношение абсолютной массы атома к 1/12 части абсолютной массы атома изотопа углерода 12С. Обозначают относительную атомную массу элемента символом Аr, где r - начальная буква английского слова relative (относительный).


Относительная молекулярная масса. Относительной молекулярной массой Мr называют отношение абсолютной массы молекулы к 1/12 массы атома изотопа углерода 12С.


Обратите внимание на то, что относительные массы по определению являются безразмерными величинами.


Таким образом, мерой относительных атомных и молекулярных масс избрана 1/12 часть массы атома изотопа углерода 12С, которая называется атомной единицей массы (а.е.м.):


Моль. В химии чрезвычайное значение имеет особая величина - количество вещества.


Количество вещества определяется числом структурных единиц (атомов, молекул, ионов или других частиц) этого вещества, оно обозначается обычно n и выражается в молях (моль).


Моль - это единица количества вещества, содержащая столько же структурных единиц данного вещества, сколько атомов содержится в 12 г углерода, состоящего только из изотопа 12С.


Число Авогадро. Определение моля базируется на числе структурных единиц, содержащихся в 12 г углерода. Установлено, что данная масса углерода содержит 6,02× 1023 атомов углерода. Следовательно, любое вещество количеством 1 моль содержит 6,02× 1023 структурных единиц (атомов, молекул, ионов).


Число частиц 6,02 × 1023 называется числом Авогадро или постоянной Авогадро и обозначается NA:


N A = 6,02 × 10 23 моль -1


Молярная масса. Для удобства расчетов, проводимых на основании химических реакций и учитывающих количества исходных реагентов и продуктов взаимодействия в молях, вводится понятие молярной массы вещества.


Молярная масса M вещества представляет собой отношение его массы к количеству вещества:
где г - масса в граммах, n - количество вещества в молях, М - молярная масса в г/моль - постоянная величина для каждого данного вещества.
Значение молярной массы численно совпадает с относительной молекулярной массой вещества или относительной атомной массой элемента.


Валентность - способность атомов химических элементов образовывать определённое число химических связей с атомами других элементов или количество связей, которые может образовывать вещество.


Степень окисления (окислительное число, формальный заряд) - вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов.
Представления о степени окисления положены в основу классификации и номенклатуры неорганических соединений.


Степень окисления соответствует заряду иона или формальному заряду атома в молекуле или в формульной единице, например:


Na + Cl - , Mg 2+ Cl 2 - , N -3 H 3 - , C +2 O -2 , C +4 O 2 -2 , Cl + F - , H + N +5 O -2 3 , C -4 H 4 + , K +1 Mn +7 O -2 4 .


Степень окисления указывается сверху над символом элемента. В отличие от указания заряда иона, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот.


H + N +3 O -2 2 - степень окисления, H + N 3+ O 2- 2 - заряды.


Степень окисления атома в простом веществе равна нулю, например:


O 0 3 , Br 0 2 , C 0 .


Алгебраическая сумма степеней окисления атомов в молекуле всегда равна нулю:


H + 2 S +6 O -2 4 , (+1 2) + (+6 1) + (-2 4) = +2 +6 -8 = 0


Химическая связь, взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют химические связи. Химическая связь определяется взаимодействием между заряженными частицами (ядрами и электронами). Основные характеристики химической связи - прочность, длина, полярность.

Свойства - совокупность признаков по которым одни вещества отличаются от других, они бывают химическими и физическими.


Физические свойства - признаки вещества, при характеристике которых вещество не изменяет свой химический состав.(плотность, агрегатное состояние, температуры плавления и кипения и т.п.)


Химические свойства - способность веществ взаимодействовать с другими веществами или изменятся под действием определённых условий.Результатом является превращения одного вещества или веществ в другие вещества.


Физические явления - новые вещество не образуется.
Химические явления - новые вещество образуется.

Что мы называем химией? Химия есть та часть естествознания, которая занимается изучением изменений вещества.

Все ли изменения вещества относятся к области химии? Нет. Существуют и такие изменения, которые должны быть отнесены к области физических изменений (например, превращение льда в воду), а также и такие, которые являются пограничными между физикой и химией, например, взаимные переходы обеих форм карбоната кальция - арагонита и кальцита.

Чем отличаются друг от друга физические и химические изменения вещества? При химических превращениях веществ образуются новые молекулы, свободные радикалы или свободные . При физических изменениях молекулы веществ остаются неизменными.

На какие отрасли может быть разделена химия? На общую химию, которая занимается изучением основных законов, относящихся ко всем химическим превращениям, и на специальную химию, занимающуюся изучением химических свойств отдельных веществ. По характеру изучаемых веществ специальная химия делится на неорганическую и органическую.

Какую часть химии называют неорганической химией? Неорганической химией раньше называлась та часть химии, которая изучает превращения веществ минерального происхождения. В настоящее время так называют всю специальную химию, за исключением химии углеводородных соединений.

Какую часть химии называют ? Раньше этим термином обозначали учение о превращениях веществ животного и растительного происхождения; ныне этим термином обозначают химию углеводородных соединений.

Какую часть химии называют физической химией? Ту часть общей химии, которая изучает влияние физических условий (например, теплоты, электричества, света, давления и т. д.) на вещество и на его химические свойства, а также изучает физические результаты этого влияния (возникновение тепла, электричества, света и т. д.) при химических превращениях. Термохимия, электрохимия, фотохимия и т. д. относятся к отдельным отраслям физической химии.

Химические элементы

Что называют химическими элементами? Элементами называют сравнительно небольшое число простых веществ, из которых построены все существующие вещества и которые образуются при разложении всех вообще веществ, но уже далее не могут быть разложены на более простые вещества химическими методами.

Возможно ли взаимное превращение одних в другие? Такие превращения в весомых количествах стали возможными лишь в самое последнее время. Однако в невесомых количествах подобные превращения происходят самопроизвольно при распаде природных и искусственно полученных радиоактивных элементов. Кроме того, почти все элементы удается при помощи физических методов превращать в мельчайших количествах в другие элементы. Однако эти превращения находятся уже за пределами явлений, изучаемых в химии.

Кто впервые ввел в химию современное понятие о химическом элементе? Еще с древних времен признавалось, что все вещества построены из нескольких немногих основных составных частей. Так, Аристотель считал, что весь мир состоит из 4-х составных начал - это , и огонь. Лишь Юнгиус (1642 г.) и Бойль (1664 г.), основываясь на опыте, сформулировали для химических элементов определение, которое еще поныне остается действительным.

Сколько природных элементов известно в настоящее время? В настоящее время известно 118 элементов. Они образуют естественный ряд элементов. Неизвестно какое число элементов еще может быть открыто. Из этого количества элементов 94 встречаются в доступных для исследования частях земного шара; остальные 24 элемента могут быть получены только искусственным путем.

Простые вещества и соединения

Какие вещества называют простыми? Простыми называются вещества, состоящие лишь из одного элемента; например, твердый фосфор или пары фосфора представляют собой простые вещества, ибо они содержат только один элемент - фосфор. Алмаз является простым веществом, ибо он состоит только из одного элемента - углерода и т. д.

Что называют химическим соединением? Химические соединения представляют собой физически однородные вещества, состоящие из двух или нескольких элементов. Так, например, вода является однородным веществом, образованным двумя элементами - водородом и кислородом.

Как можно отличить химическое соединение от смеси? Прежде всего химические соединения отличаются однородностью, т. е. каждая мельчайшая частичка, которую возможно отделить от химического соединения, должна обладать одинаковыми химическими свойствами. Такие вещества, в которых удается обнаружить отдельные частички с различными свойствами, называются физическими смесями. Однако одного только признака полнейшей однородности (гомогенности) еще недостаточно для определения понятия химического соединения, ибо существуют также и вполне однородные физические смеси, например, смеси газов (воздух) и растворы (раствор сахара в воде). Установить строгое разграничение между такими смесями и химическими соединениями чрезвычайно трудно.

Во-первых, в химическом соединении элементы вступают во взаимодействие в совершенно определенных количественных взаимоотношениях (например, на 1 весовую часть в воде приходится 8 весовых частей кислорода), в то время как в смесях составляющие их вещества, могут содержаться в самом различном количественном соотношении (например, в растворах солей различных концентраций).

Во-вторых, свойства химических соединений отличаются от свойств составных частей этого соединения; наличие составных частей в смесях можно обнаружить по их свойствам (например, кислород, содержащийся в воздухе, можно легко обнаружить, так как он поддерживает горение).

В-третьих, разложение химического соединения на составные части, как правило, не может быть достигнуто такими простыми методами, как разделение на составные части какой-нибудь смеси (например, разделение на составные части раствора путем выпаривания растворителя) .

Какие состояния вещества являются промежуточными, находящимися на границе между соединениями и смесями? Растворы. Этим термином обозначают жидкие или твердые смеси, обнаруживающие физическую однородность. Свойства составных частей при образовании растворов часто претерпевают (в противоположность к образованию газовых смесей) значительные изменения. Например, раствор соли приобретает свойство проводить электрический ток, в то время как чистая соль и чистая вода при прочих равных условиях этим свойством не обладают. Поэтому приходится признать, что при образовании растворов все же наступает какое-то взаимодействие между растворителем и растворенным веществом, которое имеет большое сходство с химическими процессами. От химических соединений растворы отличаются тем, что весовые соотношения составных частей могут в них изменяться в широких пределах.

Какие вещества носят название сплавов? Сплавами называют однородные по внешним признакам смеси , образованные сплавлением этих металлов, а также путем их соединения с неметаллическими элементами (например, с углеродом, фосфором и т. д.). При рассмотрении под микроскопом многие сплавы выявляются в качестве механических смесей; другие же сплавы действительно обнаруживают свою однородность и представляют собой, следовательно, твердые растворы (непрерывно изменяющегося состава) или истинные химические соединения (определенного состава).

О чем говорит закон постоянства состава? Закон постоянства состава утверждает, что химические соединения отличаются совершенно определенным, всегда неизменным составом. Вода всегда содержит, независимо от характера ее образования и от физических условий, 8 весовых частей кислорода на 1 весовую часть водорода. Поваренная соль содержит всегда 23 весовые части натрия на 35г5 весовых частей хлора и т. д.

О чем говорит закон кратных отношений? Закон кратных отношений утверждает, что в тех случаях, когда два элемента способны образовать друг с другом не одно, а два или несколько разных химических соединений, то количество одного элемента, способное присоединиться к определенному количеству другого элемента, будет находиться в соотношении целых чисел. Так, например, водород образует с кислородом, кроме воды, еще и другое соединение - перекись водорода. В воде на одну часть водорода приходится 8″, а в перекиси водорода - 16 весовых частей кислорода, числа 8 и 16 находятся друг к другу в простом отношении 1 к 2. Аналогичные соотношения наблюдаются также и для соединений, состоящих более чем из двух различных элементов. Так, например, три элемента - водород, хлор и кислород - образуют друг с другом четыре различных соединения; на 1 часть водорода, а также на 35,5 частей хлора в этих соединениях приходится 16, 32, 48 и 64 части кислорода. Эти количества кислорода находятся друг к другу в соотношении 1:2: 3: 4.

Что следует понимать под термином «агрегатное состояние»? Большинство простых веществ и соединений могут находиться в трех формах - твердой, жидкой и газообразной. Эти три формы называют агрегатными состояниями вещества. вещества обусловливается давлением и температурой.

Что следует понимать под терминами «аллотропные» или «аллотропические модификации» (видоизменения) вещества? Многие простые вещества способны образовывать несколько различных твердых (реже жидких или газообразных) видоизменений (желтый и красный фосфор, алмаз и графит, кислород и озон), которые называются аллотропическими модификациями. Многие элементы (фосфор и др.) могут встречаться в металлических и неметаллических модификациях.

Какую температуру называют критической? Критической температурой называют такую, выше которой вещество уже не способно существовать в жидкой форме; при выше критической никакое повышение давления не может уже обусловить переход пара или газа в жидкое состояние.

Какое состояние называют коллоидным? Многие органические вещества, как и некоторые неорганические (например, сернистый мышьяк, кремниевая кислота, металлическое золото или серебро и др.) проявляют способность при особых обстоятельствах (например, при самом их выделении из растворов) образовывать прозрачную жидкую смесь с растворителем, хотя по существу они являются нерастворимыми в данной жидкости. Такие смеси называются коллоидными растворами.

Какой смысл имеет термин «растворимость»? Существуют вещества, образующие друг с другом однородные смеси (растворы) во всех количественных соотношениях (например, вода и серная кислота). Однако большинство веществ растворяются в других веществах лишь до определенной границы, которую и обозначают как растворимость вещества А в растворителе Б. Эту границу обозначают, например, числом граммов на 100 г раствора или числом граммов на 100 см 3 раствора. Раствор, который имеет максимально возможное содержание растворенного вещества при данных внешних условиях, называют насыщенным раствором. Растворимость вещества зависит от температуры. В большинстве случаев она увеличивается с повышением температуры. Однако встречаются такие вещества, как, например, гипс, растворимость которых с повышением температуры уменьшается.

ХИМИЯ , наука о веществах, их превращениях, взаимодействии и о происходящих при этом явлениях. Выяснением основных понятий, к-рыми оперирует X., как напр, атом, молекула, элемент, простое тело, реакция и др., учением о молекулярных, атомных и эквивалентных весах и изучением общих закономерностей, к-рым подчиняются простые и сложные тела, занимается общая X. Отличия в свойствах веществ, содержащих углерод, от соединений других элементов, особые закономерности и большое количество известных соединений углерода привели к отделению X. углерода-органической химии (см.)-от неорганической химии (см.), изучающей соединения остальных элементов. Нек-рые отделы этих наук в свою очередь выделились в самостоятельные дисциплины, как напр. биологическая химия (см.), X. реактивных веществ, X. редких элементов и др. С точки зрения методов, какими пользуется X. для изучения вещества, различают: аналитическую химию, преследующую цель узнать состав данного тела, для чего она разлагает его на составные части, выделяет из них чистые вещества и определяет, из каких элементов они построены (качественный анализ), в каких количествах находятся эти элементы (количественный анализ) и как они между собой соединены. Решения этих вопросов аналитическая X. достигает путем изучения реакций данного вещества с другими уже известными веществами (реактивами). Выводы и заключения аналитической X. проверяются синтетической X., к-рая, руководствуясь данными анализа и общими законами, стремится построить, получить вещество, исходя из более простых веществ, строение к-рых известно, или из элементов. Синтетическая X. не только искусственно получает вещества, находимые в природе, но и приготовляет совершенно новые вещества, подчас обладающие весьма ценными свойствами (синтезы многих красок, фарм. препаратов, взрывчатых веществ, ОВ и др.). Применение физ. методов к изучению веществ и хим. реакций привело к созданию физической химии (см.), дисциплины, охватывающей математическими закономерностями хим. явления и распадающейся в свою очередь на ряд дисциплин: термохимия, электрохимия, фотохимия и др. Изменение свойств вещества в зависимости от его раздробленности, дисперсности и весьма большое распространение в природе веществ в состоянии мельчайшего раздробления, в коллоидном состоянии-послужили причиной выделения в самостоятельную дисциплину еще одного отдела теоретической X.-коллоидной химии (см. Коллоиды, коллоидная химия). Достижения и выводы теоретической X. лежат в основе прикладной X., также дробящейся на ряд отделов, в зависимости от того, в какой области она находит применение. Так, техническая X. изучает наиболее целесообразные методы получения на практике различных веществ. Агрохимия исследует хим. состав и свойства различных почв в связи с культивированием на них тех или иных растений, учит целесообразному употреблению удобрений. Пищевая X. изучает продукты питания с точки зрения их питательной ценности, исследования доброкачественности, открытия фальсификаций и возможности замены одного продукта другим (проблема суррогатов). Фармацевтическая химия (см.) занимается синтезом медикаментов и выяснением связи между составом и строением вещества и его действием на организм. Судебная химия (см.), открывая яды и примеси посторонних веществ в различных продуктах и органах, способствует раскрытию преступлений. Некоторые отделы технической X., дав начало особым отраслям промышленности, выросли в специальные дисциплины, таковы: X. красителей, X. искусственного волокна, X. каучука и т. п. Если X. в своем развитии приходится пользоваться данными и прибегать к помощи математики, механики и гл. обр. физики, с к-рой X. в нек-рых отделах, как напр. в учении о строении атома, нераздельно сливается, то и обратно: данные X. широко используются в целом ряде дисциплин. Развитие геологии и минералогии стоит в тесной связи с хим. исследованием минералов, полезных ископаемых и горных пород. Ботаника в ее крупных отделах-физиологии растений и агрономии- основывается на данных X. Микробиология, имея дело с изменением вещества под влиянием микроорганизмов, тем самым входит в тесное соприкосновение с X. Широко пользуется успехами химии и медицина в самых разнообразных ее отделах. Биол. X. занимается изу- чением с хим. точки зрения протекающих в организме процессов. Физиология, фармакология, фармация, химиотерапия, экспериментальная гигиена и ряд других дисциплин, изучающих превращения веществ в организме или взаимодействие их с организмом, тем самым стоят в тесной связи с X. Краткий очерк развития X. Период первоначального знакомства с хим. явлениями, период накопления разрозненных опытных данных, отдельных наблюдений, фактов начался в Египте, где в руках жрецов были собраны сведения об обработке металлов, производстве стекла, эмали, приготовлении сплавов, лекарств, способах бальзамирования трупов. Все эти процессы обставляются мистическим ритуалом, хранятся в тайне, и повиди-мому от египетского слова chemi, означающего черный, темный, и произошло название X. Этот период продолжался арабами (8-9 вв.), назвавшими науку о приготовлении сплавов, очистке олова, свинца, о способах окраски, умножении золота, о приготовлении лекарств, любовных зелий и т. п. алхимией (см.). От арабов алхимия перешла в Европу (13-14 вв.). Расширение торговых связей и поднятие ценности золота в торговых оборотах выдвинули на первый план проблему получения золота из других веществ. Руководствуясь идеями Аристотеля и широко пользуясь экспериментом, алхимики в поисках философского камня для превращения веществ и элексиров, дающих здоровье и молодость, накопили огромный опытный материал, в чем основное значение этой эпохи. Работы Бойля (1627-1691), выдвинувшего на первое место эксперимент, а не предвзятые идеи, открывают новую эпоху в развитии X. Изучая разложение веществ, Бойль приходит к понятию хим. элемента как простого вещества, не поддающегося дальнейшему разложению. Развитие промышленности (17 и начало 18 вв.) и в частности металлургии сосредотачивало внимание химиков того времени на явлениях окисления и восстановления металлов, явлениях горения, и накопившиеся факты неизбежно требовали обобщения, без к-рого не могло быть дальнейшего развития. Таким обобщением явилась теория флогистона Г. Шталя (1660-1734) (см. Неорганическая химия), служившая путеводной нитью при дальнейших исследованиях в продолжение почти целого столетия. К этому времени на смену феодализма идет молодой, революционный тогда класс-буржуазия. Конец 18 в. характеризуется бурным ростом производительных сил и развитием естественных наук; в X. мы имеем целую плеяду талантливых химиков. Кевендиш (1766) открывает водород, Пристли (1774) получает и описывает кислород, Шееле-хлор и ряд органических соединений, Д. Резерфорд (1772) открывает азот. Теория флогистона в своем развитии накапливает ряд противоречий, и Лавуазье (1743-1794), основываясь на экспериментальном материале теории флогистона, опровергает последнюю, открывая в полученном Пристли кислороде реальный антипод флогистона. Введя строго количественный метод в X. (взвешивание веществ до и после реакции), Лавуазье обосновывает правильную теорию окисления и экспериментально подтверждает закон сохранения материи, формулированный еще ранее Ломоносовым (1711-1765). Количественные исследования Рихтера (1762-1807), Бергмана, Венцеля и других химиков привели к открытию законов постоянства состава, эквивалентов, и наконец Дальтон (1766-1844), открыв закон кратных отношений, видит в нем экспериментальное доказательство атомистической теории строения вещества, теории, лежащей в основе всех представлений современной X. Исследования Г. Люссака (1805) и Авогадро (1811) над объемами реагирующих газов способствовали дальнейшему развитию атомной и молекулярной теории вещества. В. Проут (1785-1850) пошел еще дальше и на основании простых соотношений, наблюдаемых у нек-рых атомных весов, сделал вывод о существовании атомов первоначальной материи, из которых построены все атомы элементов. Гипотеза Проута была совершенно оставлена после более точных определений атомных весов, произведенных Стасом (1813-1891), и только в современной X. после открытия изотопов (см.) эта гипотеза нашла блестящее подтверждение в электронной теории атомов. Большое влияние на дальнейшее развитие X. оказали работы Берцелиуса (1779-1848), выдвинувшего электрохимическую теорию сродства и определившего очень точно для того времени атомные веса известных тогда элементов. Ему же принадлежит введение современной хим. символики. Переход от кустарного к машинному способу производства повлиял на развитие металлургии, потребовавшей в свою очередь высококачественного угля. Получающаяся при коксовании угля каменноугольная смола дала ряд веществ для бурного развития органической хим. промышленности, в первую очередь красок, нужных для текстильной промышленности. В тесной связи со сказанным стоит быстрое развитие органической X. начиная с 40-х годов 19 в. (работы Жерара, Бертло-во Франции, Фарадея-в Англии, Либиха, Велера, Бунзена, Кекуле-в Германии и Воскресенского, Зи-нина, Бутлерова-в России). Устанавливаются основные понятия о различии атома и молекулы, атомного веса и эквивалента (работы Лорана, Жерара, Канниццаро). Обобщением огромного материала химии явился периодический закон, открытый Д. И. Менделеевым (1837-1907). Периодическая система элементов (см.) не только позволила систематизировать имеющийся материал, но предсказала ряд позднее открытых элементов, указала на связь, существующую между элементами, и послужила основой для всего современного учения о строении атомов. Конец 19 в. и начало 20 в. характеризуется развитием физической X. Законы, найденные термохимией, позволили впервые подойти с количественной точки зрения к определению химического сродства. Теория растворов вант-Гоффа, электролитической диссоциации Аррениуса послужила фундаментом для создания учения об ионах (см.). Открытие лучей Рентгена, явлений радиоактивности, изотопов, развитие спектроскопии позволили глубже проникнуть в строение атомов и подойти к разрешению таких вопросов современной X., как природа хим. сродства, катализ, превращение элементов, строение высокомолекулярных соединений и, др. (работы Бора, Ленгмюра, Резерфорда, Дебая, Планка, Косселя, Астона, Льюиса, Тейлора, Штаудингера и др.). Роль X. в царской России была очень скромной. Правда, в области теоретической X. от- дельные русские ученые занимали видное место (Ломоносов, Зинин, Бутлеров, Менделеев, Марковников и др.), но по развитию хим. промышленности Россия занимала одно из последних мест. Только после Октябрьской революции во всей широте была поставлена проблема химизации всего хозяйства СССР. Уже к началу второго пятилетия окрепла основная хим. и туковая промышленность, расширено и реконструировано коксохим. производство. Создаются промышленности ани-ло-и лако-красочная, искусственного волокна, пластмасс, каучука, фармацевтическая и др. Растут хим. комбинаты: Березники, Бобрики, Хибины. Неимоверно расширилась сеть научно-исследовательских ин-тов, лабораторий, кафедр. Важнейшими хим. лабораториями и ин-тами в СССР являются: лаборатории хим. и биол. ассоциаций Академии наук СССР, Фи-зико-хим. ин-та им. Карпова, Государственный ин-т прикладной химии, Химико-фармацевтический ин-т, Ин-т органических полупродуктов и красителей, химический сектор ВИЭМ и лаборатории кафедр высших учебных заведений (лаборатории химии МГУ, Военно-химической академии, Ленинградского ун-та, Казанского ун-та и др.). Все это способствует росту хим. мощи Союза и выдвижению его и по хим. промышленности на одно из первых мест, а вместе с тем и росту хим. научных сил и самой X. Для обмена опытом и совместного обсуждения работ химики объединяются в хим. общества (Менделеевское хим. общество, в СССР, Deutsehe chemische Gesellschaft, Societe chimique de France, American chemical society и др.), периодически устраиваются международные съезды (напр. Менделеевские съезды, устраиваемые в СССР) и издается целый ряд периодических изданий (таковыжурнал общей и физ. X., журнал хим. промышленности, химико-фармацевтический журнал в СССР, Berichte der deutschen chemi-schen Gesellschaft, Zeitschrift fur analytische Chemie, Zeitschrift fur physikalische Chemie, Zeitschrift fur anorganische und allgemeine Chemie, Mikrochemie, Kolloid-Zeitschrift-в Германии, Journal of the American chemical society-в Америке, Journal of the chemical society-в Англии, Bulletin de la Societe chimique, Annales de chimie-во Франции и др. Преподавание X. в мед. вузах преследует две цели: 1) дать запас хим. сведений, благодаря к-рым врач может сознательно разбираться в хим. процессах, протекающих в здоровом и больном организме, сопоставлять их с картиной, получаемой при клин, исследовании крови, мочи, кала и т. п., ориентироваться в фармакологии, химиотерапии, разбираться в причинах проф. заболеваний и вести профилактическую работу на хим. производствах; 2) научить студента делать выводы и сопоставления из экспериментального материала, с к-рым он знакомится на практических занятиях, и расширить общий культурный кругозор студента. Т. к. отдельные хим. дисциплины стоят друг с другом в генетической связи, то преподавание X. целесообразно вести в следующей последовательности: неорганическая X., аналитическая X., органическая X., физическая X., коллоидная X. и биологическая X. Лит.: История.-В альдея П., Очерк истории химии в России, Одесса, 1917; Герц В., Очерк истории развития основных воззрений химии, Л., 1924; Ладе ц б у р г А., Лекции по истории развития химии от Лавуазье до нашего времени, Одесса, 1917; Мен-шуткин Б., Важнейшие этапы в развитии химии, Л"., 1932; Мур Ф., История химии, М.-Л., 1925; Рамса й-Оствальд, Из истории химии, П., 1920; Ш о р ы г и н П., Успехи органической химии, М.-Л., 1928; Berthelot M., Die Chemie im Altertum und im Mittelalter, Lpz., 1909; Brown J., A history of chemistry from the earliest times till the present day, L., 1913; Cushman A., Chemistry and civilization, Boston, 1920; Delacre M., Histoire de la chimie, P., 1920; G-r a e b e C, Geschichte der organi-schen Chemie, B.," 1920; Meyer E., Geschichte der Chemie von den altesten Zeiten bis zur Gegenwart, zugleich Einfiihrung in das Studium der Chemie, Lpz., 1914; Moore F., A history of chemistry, N.-Y., 1918; Tilde nW., The progres of scientific chemistry in our own times, with biographical notices, L., 1913. Руководства и справочники.-Г ипзберг А., Курс органической химии для медиков, Л., 1933; Каблуков И., Основные начала неорганической химии, М., 1931; Котюков И., Физическая химия, Томск, 1930; Л аур и Г., Сег"ден Си Раковский А., Курс физической химии, М., 1934; М е н д е л е е в Д., Основы химии, т. I-П, М., 1934; Реформатский А., Начальный курс органической химии, М.-П., 1923; о н ш е, Неорганическая химия, М., 1924; Степанов А., Курс органической химии для медиков, М.- Л., 1932; Тредвель Ф., Курс аналитической химии, т. I-II, М.-Л., 1927; Чичибабин А., Основные начала органической химии, М.-Л., 1931; Ш о-рыгин П., Краткий курс органической химии для медиков и биологов, Л. - М., 1932; В е i 1 s t e i n, Handbuch der organischen Chemie, hrsg. v. d. Deutschen chemischen Gesellschaft, B. I-XX, В., 1918-1935; Handbuch der biochemischen Arbeitsmethoden, hrsg. v. E. Abderhalden, В.-Wien, B. I-IV, 1909-1910; Holland J., A text-book of medical chemistry, Philadelphia-L., 1917; Holleman A., Lehrbuch der Chemie, B. I-II, B.-Lpz., 1930; Krause H., tlber den Anteil der Chemie an der Entwicklung der medizi-nischen Wissenschaften, Lpz., 1907; Oppenheimer C, Chemische Technik fur Aerzte, Lpz., 1912; The chemical age, chemical dictionary, London, 1924; U 1-lmann F., Enzyklopadie der technischen Chemie, Berlin, 1914. Библиография.-T ерентьев А., Специальная химическая литература и пользование ею, библиографич. указатель, М., 1933; За овладение техникой, Химический реферативный журнал, Л., с 1931; Bibliographia chimica, internationaler Literaturanzeiger fur Chemie, chemische Technologie und alle Grenzgebiete, Lpz., 1922- 1926; British chemical abstracts, L., с 1926; Chemical abstracts, Washington, с 1907; Chemisches Zentralblatt, В., с 1856; Mason F., An introduction to the literature ot. chemistry, Oxford, 1925; Mellon, Chemical publications, their nature and use, N. Y., 1928; W e s t с h a-rence Y. a. Berolzheimer D., Bibliography of bibliographies on chemistry and chemical technology, Washington, 1932. Периодические издания.- Журнал общей химии, М.-Л., с 1931; Журнал прикладной химии, М., с 1924; Журнал физической химии, М., с 1930; Annales de chimie et de physique, P., 1816; Berichte der Deutschen chemischen Gesellschaft, В., с 1868; Chemical News, L., с 1859; Helvetica chimica acta, Geneve,с 1918; Journal of theAmerican chemical society, N. Y., с 1879; Journal of the chemical society of London, L., с 1862; Liebig"s Annalen der Chemie, Lpz., с 1873; Zeitschrift fur angewandte Chemie, В., с 1888; Zeitschrift fur anorganische und allgemeine Chemie, Lpz., с 1891. См. также литературу к статьям Биологическая химия, Коллоиды, коллоидная химия, Физиология и Физическая химия. А. Кузин.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама