THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В кишечнике человека проживают микроорганизмы, которые составляют общую массу до двух килограмм. Они образуют местную флору. Соотношение строго поддерживается по принципу целесообразности.

Бактериальное содержимое неоднородно по функциям и значимости для организма-хозяина: одни бактерии во всех условиях оказывают поддержку через правильную работу кишечника, поэтому именуются полезными. Другие - только ожидают малейшего срыва в управлении и ослабления организма, чтобы превратиться в источник инфекции. Их называют условно-патогенными.

Внедрение в кишечник бактерий-чужаков, способных вызвать болезнь, сопровождается нарушением оптимального баланса даже если человек не болеет, а является носителем инфекции.

Лечение заболевания медикаментами, особенно антибактериального действия, губительно сказывается не только на возбудителях болезни, но и на полезных бактериях. Возникает проблема, как устранить последствия терапии. Поэтому учеными создана большая группа новых препаратов, поставляющих живые бактерии для кишечника.

Какие бактерии образуют кишечную флору?

В пищеварительном тракте человека обитает около полутысячи видов микроорганизмов. Они выполняют следующие функции:

  • помогают своими ферментами расщепить попавшие с продуктами вещества до нормального усвоения, всасывания сквозь кишечную стенку в кровоток;
  • производят уничтожение ненужных остатков переваривания пищи, шлаков, токсических веществ, газов, чтобы не допустить процессов гниения;
  • вырабатывают для организма специальные ферменты, биологически активные вещества (биотин), витамин К и фолиевую кислоту, которые необходимы для жизнедеятельности;
  • участвуют в синтезе компонентов иммунитета.

Исследования показали, что часть бактерий (бифидобактерии) защищают организм от рака.

Пробиотики постепенно вытесняют патогенные микробы, лишая их питания и направляя к ним иммунные клетки

К основным полезным микроорганизмам относятся: бифидобактерии (составляют 95% всей флоры), лактобактерии (по массе почти 5%), эшерихии. Условно-патогенными считаются:

  • стафилококки и энтерококки;
  • грибы рода Кандида;
  • клостридии.

Они становятся опасными при падении иммунитета человека, изменении кислотно-щелочного равновесия в организме. Примером вредных или патогенных микроорганизмов являются шигеллы, сальмонеллы - возбудители брюшного тифа, дизентерии.

Полезные живые бактерии для кишечника еще называются пробиотиками. Так, стали именовать специально созданные заменители нормальной кишечной флоры. Другое название - эубиотики.
Сейчас они эффективно применяются для лечения патологии пищеварения и последствий негативного воздействия лекарственных средств.

Виды пробиотиков

Препараты с живыми бактериями постепенно совершенствовались и обновлялись по свойствам и составу. В фармакологии их принято подразделять на поколения. К первому поколению относятся лекарственные средства, содержащие только один штамм микроорганизмов: Лактобактерин, Бифидумбактерин, Колибактерин.

Второе поколение образуют препараты-антагонисты, содержащие необычную флору, способную противостоять патогенным бактериям и поддержать пищеварение: Бактистатин, Споробактерин, Биоспорин.

В третье поколение входят многокомпонентные лекарства. Они содержат по несколько штаммов бактерий с биодобавками. В группу включены: Линекс, Ацилакт, Аципол, Бифилиз, Бифиформ. Четвертое поколение составляют только препараты из бифидобактерий: Флорин Форте, Бифидумбактерин Форте, Пробифор.

По бактериальному составу пробиотики можно разделить на содержащие как основной компонент:

  • бифидобактерии - Бифидумбактерин (форте или порошок), Бифилиз, Бификол, Бифиформ, Пробифор, Биовестин, Лайфпак Пробиотикс;
  • лактобактерии - Линекс, Лактобактерин, Ацилакт, Аципол, Биобактон, Лебенин, Гастрофарм;
  • колибактерии - Колибактерин, Биофлор, Бификол;
  • энтерококки - Линекс, Бифиформ, БАДы отечественного производства;
  • дрожжеподобные грибки - Биоспорин, Бактиспорин, Энтерол, Бактисубтил, Споробактерин.

Что нужно учитывать при покупке пробиотиков?

Под разными названиями фармакологическими фирмами в России и за рубежом могут производиться одинаковые препараты-аналоги. Импортные, конечно, гораздо дороже. Проведенные исследования показали, что люди, проживающие в России, более адаптированы к местным штаммам бактерий.


Покупать все-таки лучше свои препараты

Другой негатив - как оказалось, импортные пробиотики содержат всего пятую часть от заявленного объема живых микроорганизмов и не заселяются надолго в кишечнике пациентов. Перед приобретением необходима консультация специалиста. Это вызвано серьезными осложнениями от неправильного использования препаратов. У пациентов зарегистрированы:

  • обострение желчекаменной и мочекаменной болезни;
  • ожирение;
  • аллергические реакции.

Не нужно путать живые бактерии с пребиотиками. Это тоже лекарственные средства, но не содержащие микроорганизмов. В составе пребиотиков имеются ферменты, витамины для улучшения пищеварения, стимуляции роста полезной микрофлоры. Они часто назначаются при запорах детям и взрослым.

В группу входят известные практическим врачам: Лактулоза, пантотеновая кислота, Хилак форте, Лизоцим, препараты из инулина. Специалисты считают, что необходимо сочетать пребиотики с пробиотическими препаратами для достижения максимального результата. Для этого созданы комбинированные препараты (синбиотики).

Характеристика пробиотиков первого поколения

Препараты из группы пробиотиков первого поколения назначаются маленьким детям при выявлении дисбактериоза первой степени, а также при необходимости профилактики, если пациенту назначают курс антибиотиков.


Примадофилус - аналог препаратов с лактобактериями двух видов, гораздо дороже остальных, поскольку производится в США

Педиатр выбирает для грудничков Бифидумбактерин, Лактобактерин (включают бифидо- и лактобактерии). Их разводят в теплой кипяченой воде и дают за 30 минут до грудного кормления. Старшим детям и взрослым подходят препараты в капсулах, таблетках.

Колибактерин - содержит высушенные бактерии кишечной палочки, применяется при затяжном течении колитов у взрослых. Более современный монопрепарат Биобактон содержит ацидофильную палочку, показан начиная с периода новорожденности.

Наринэ, Наринэ Форте, Наринэ в молочном концентрате - содержит ацидофильную форму лактобактерий. Поступает из Армении.

Назначение и описание пробиотиков второго поколения

В отличие от первой группы, пробиотики второго поколения не содержат полезных живых бактерий, но включают другие микроорганизмы, способные подавлять и уничтожать патогенную микрофлору - дрожжеподобные грибы и споры бацилл.

Применяют в основном для терапии детей с легкой формой дисбактериоза и кишечными инфекциями. Продолжительность курса следует соблюдать не более семи дней, затем переходить на живые бактерии первой группы. Бактисубтил (французский препарат) и Флонивин БС содержат споры бациллы с широким спектром антибактериального действия.


Внутри желудка споры не разрушаются соляной кислотой и ферментами, доходят неповрежденными в тонкий кишечник

Бактиспорин и Споробактерин изготовлены из сенной палочки, сохранены антагонистические свойства к патогенным возбудителям, устойчивость к действию антибиотика Рифампицина.

Энтерол содержит дрожжеподобные грибы (сахаромицеты). Поступает из Франции. Применяют в лечении диареи, связанной с антибиотиками. Активен в отношении клостридий. Биоспорин включает бактерии сапрофиты двух видов.

Особенности пробиотиков третьего поколения

Собранные в комбинацию живые бактерии или несколько их штаммов действуют активнее. Применяются для лечения острых кишечных расстройств средней тяжести.

Линекс - содержит бифидобактерии, лактобациллы и энтерококки, выпускается в Словакии в специальном порошке для детей (Линекс Бэби), капсулах, саше. Бифиформ - датский препарат, известно несколько разновидностей (Бэби-капли, жевательные таблетки, комплекс). Бифилиз - содержит бифидобактерии и лизоцим. Выпускается в суспензии (лиофилизат), ректальных свечах.


В составе препарата бифидобактерии, энтерококки, лактулоза, витамины В 1 , В 6

Чем отличаются пробиотики четвертого поколения?

При производстве препаратов с бифидобактериями этой группы учтена необходимость создания дополнительной защиты пищеварительного тракта и снятия интоксикации. Средства называют «сорбированными», потому что действующие бактерии расположены на частицах активированного угля.

Показаны при респираторных инфекциях, заболеваниях желудка и кишечника, дисбактериозе. Наиболее популярные препараты этой группы. Бифидумбактерин Форте - содержит живые бифидобактерии сорбированные на активированном угле, выпускается в капсулах и порошках.

Результативно защищает и восстанавливает кишечную флору после перенесенных респираторных инфекций, при острой гастроэнтерологической патологии, дисбактериозе. Препарат противопоказан людям с врожденной недостаточностью фермента лактазы, при ротавирусной инфекции.

Пробифор - отличается от Бифидумбактерина Форте количеством бифидобактерий, оно в 10 раз превышает предыдущий препарат. Поэтому лечение гораздо эффективнее. Назначается в тяжелых формах кишечной инфекции, при заболеваниях толстого кишечника, дисбактериозе.

Доказано, что эффективность приравнивается при заболеваниях, вызванных шигеллами, к антибиотикам фторхинолонового ряда. Способен заменить комбинацию Энтерола и Бифилиза. Флорин Форте - включает лакто- и бифидобактериальный состав, сорбированный на угле. Выпускается в виде капсул и порошка.

Применение синбиотиков

Синбиотики - совершенно новое предложение в терапии нарушений флоры кишечника. Они предусматривают двойное действие: с одной стороны - обязательно содержат пробиотик, с другой - включают пребиотик, создающий благоприятные условия для разрастания полезных бактерий.

Дело в том, что действие пробиотиков не продолжительно. После восстановления микрофлоры кишечника они могут погибать, чем снова вызывают ухудшение ситуации. Сопутствующие пребиотики питают полезные бактерии, обеспечивают активное разрастание и защиту.

Многие синбиотики относятся к биодобавкам, а не лекарственным веществам. Сделать правильный выбор может только специалист. Самостоятельно принимать решение о лечении не рекомендуется. К препаратам этого ряда относятся следующие.

Lb17

Многими авторами относится к самым лучшим препаратам на сегодняшний день. Он сочетает полезное действие 17 видов живых бактерий с экстрактами водорослей, грибов, овощей, лекарственных трав, фруктов, зерновых культур (более 70 компонентов). Рекомендован для курсового применения, в сутки нужно принимать от 6 до 10 капсул.

Производство не связано с сублимированием и сушкой, поэтому сохранена жизнеспособность всех бактерий. Препарат получают способом естественной ферментации в течение трех лет. Штаммы бактерий работают в разных участках пищеварения. Подходит для людей с непереносимостью лактозы, не содержит глютен и желатин. Поступает в аптечную сеть из Канады.

Мультидофилус плюс

Включает три штамма лактобацилл, один - бифидобактерий, мальтодекстрин. Производится в США. Выпускается в капсулах для взрослых. Польское средство Максилак в своем составе содержит: в качестве пребиотика олигофруктозу, как пробиотик - живые культуры полезных бактерий (три штамма из бифидобактерий, пять - из лактобактерий, стрептококк). Показан при заболеваниях желудочно-кишечного тракта, дыхательной системы, нарушенном иммунитете.


Назначается детям с трехлетнего возраста и взрослым по 1 капсуле вечером во время еды

Какие пробиотики имеют целевые показания?

При обилии информации о бактериальных препаратах с живыми микроорганизмами некоторые люди кидаются в крайности: или не верят в целесообразность применения, или, наоборот, тратят деньги на малополезные средства. Необходимо проконсультироваться у специалиста о применении пробиотиков в конкретной ситуации.

Детям с поносом в период грудного вскармливания (особенно родившимся недоношенными) назначают жидкие пробиотики. Они также помогают при нерегулярном стуле, запорах, отставании в физическом развитии.

Малышам в таких ситуациях показаны:

  • Бифидумбактерин Форте;
  • Линекс;
  • Аципол;
  • Лактобактерин;
  • Бифилиз;
  • Пробифор.

Если диарея у ребенка связана с перенесенным респираторным заболеванием, пневмонией, инфекционным мононуклеозом, ложным крупом, то эти средства назначаются коротким курсом на 5 дней. При вирусных гепатитах лечение длится от недели до месяца. Аллергические дерматиты лечат курсами от 7 дней (Пробифор) до трех недель. Больному с сахарным диабетом рекомендуется проводить курсы пробиотиков разных групп по 6 недель.

Для приема с профилактической целью больше всего подходят Бифидумбактерин Форте, Бифилиз в сезон повышенной заболеваемости.

Что лучше принимать при дисбактериозе?

Необходимо для уверенности в нарушении кишечной флоры сдать анализ кала на дисбактериоз. Врач должен установить, каких конкретно бактерий не хватает организму, насколько тяжелы нарушения.

При установленном дефиците лактобактерий необязательно применять только препараты. их содержащие. Потому что именно бифидобактерии являются определяющими в дисбалансе и формируют остальную микрофлору.


Монопрепараты, в которых имеются только однотипные бактерии, рекомендуются врачом только при легкой степени нарушений

В тяжелых случаях необходимы комбинированные средства третьего и четвертого поколений. Наиболее показан Пробифор (инфекционные энтероколиты, колиты). Для детей всегда нужно подбирать комбинации препаратов с лакто- и бифидобактериями.

Средства с колибактериями назначают очень осторожно. При выявлении язв в кишечнике и желудке, остром гастроэнтерите более показаны пробиотики с лактобактериями.

Обычно длительность лечения врач определяет по поколению пробиотика:

  • I – необходим месячный курс.
  • II – от 5 до 10 дней.
  • III – IV - до семи дней.

При отсутствии эффективности специалист изменяет схему лечения, добавляет противогрибковые средства, антисептики. Применение пробиотиков - современный подход к лечению многих заболеваний. Особенно важно это помнить родителям маленьких детей. Необходимо отличать лекарственные средства от биологических добавок к пище. Существующие БАДы с кишечными бактериями можно применять только здоровому человеку с целью профилактики.


В этот самый момент, человек, когда ты читаешь эти строки, ты получаешь пользу от работы бактерий. От кислорода, который мы вдыхаем, до питательных веществ, которые извлекает желудок из еды, нам нужно благодарить бактерий за процветание на этой планете. В нашем организме микроорганизмов, включая бактерий, больше, чем наших собственных клеток примерно в десять раз. По сути, мы больше микробы, чем люди.

Только недавно мы начали понемногу понимать микроскопические организмы и их влияние на нашу планету и здоровье, но история показывает, что много веков назад наши предки уже использовали мощь бактерий, ферментируя продукты питания и напитки (кто-нибудь слышал о хлебе и пиве?).

В 17 веке мы начали изучать бактерий уже непосредственно в наших телах в тесной связи с нами - во рту. Любопытство Антони ван Левенгука позволило обнаружить бактерии, когда он изучал бляшку между его собственными зубами. Ван Левенгук поэтически описал бактерий, обозначив бактериальную колонию на своих зубах как «немного белого вещества, похожего на застывшее тесто». Разместив образец под микроскопом, ван Левенгук увидел, что микроорганизмы движутся. Так они живые!

Вы должны знать, что бактерии сыграли важнейшую роль для Земли, став ключевым моментом в создании пригодного для дыхания воздуха и биологического богатства планеты, которую мы зовем домом.

В этой статье мы предоставим вам общую картину об этих крошечных, но очень влиятельных микроорганизмах. Мы рассмотрим хорошие, плохие и совершенно причудливые способы, которыми бактерии формируют историю человека и окружающей среды. Для начала рассмотрим, чем бактерии отличаются от других видов жизни.

Основы бактерий

Что ж, если бактерии незаметны невооруженному глазу, откуда мы можем знать так много о них?

Ученые разработали мощные микроскопы, чтобы взглянуть на бактерий - их размеры варьируются от одного до нескольких микрон (миллионной части метра) - и выяснить, как они соотносятся с другими формами жизни, растениями, животными, вирусами и грибками.

Как вы, возможно, знаете, клетки - это строительные кирпичики жизни, из них состоят и ткани нашего тела, и дерево, которое растет за окном. Люди, животные и растения обладают клетками с генетической информацией, заключенной в мембране под названием ядро. Эти типы клеток, которые называются эукариотическими, обладают специальными органеллами, каждая из которых выполняет уникальную работу, помогая клетке работать.

Бактерии, однако, не имеют ядер, и их генетический материал (ДНК) свободно плавает внутри клетки. У этих микроскопических клеток нет органелл и они обладают другими методами воспроизводства и передачи генетического материала. Бактерии считаются прокариотическими клетками.

Выживают ли бактерии в среде с кислородом или без

Их форма: палочки (bacillus), круги (cocci) или спирали (spirillum)

Являются ли бактерии грамотрицательными или грамположительными, то есть обладают ли внешней защитной мембраной, препятствующей окрашиванию внутренностей клетки

Как бактерии перемещаются и изучают окружающую среду (у многих бактерий есть жгутики, крошечные плетевидные структуры, которые позволяют им передвигаться в среде)

Микробиология - наука о всех типах микробов, включая бактерии, археи, грибы, вирусы и простейшие - позволяет отличать бактерии от их микробных братьев.

Похожие на бактерии прокариоты, ныне классифицирующиеся как археи, когда-то были вместе с бактериями, но когда ученые узнали о них больше, они предоставили бактериям и археям собственные категории.

Микробное питание (и миазма)

Как и людям, животным и растениям, бактериям нужна пища для выживания.

Некоторые бактерии - автотрофы - используют основные ресурсы вроде солнечного света, воды и химических веществ из окружающей среды для создания пищи (подумайте о цианобактериях, которые превращали солнечный свет в кислород в течение 2,5 миллионов лет). Другие бактерии ученые называют гетеротрофами, потому что они черпают энергию из существующих органических веществ в качестве пищи (к примеру, мертвые листья на лесной почве).

Правда в том, что то, что может быть вкусным для бактерий, будет нам противно. Они развивались, чтобы поглощать все типы продуктов, от разливов нефти и побочных продуктов ядерного распада до человеческих отходов и продуктов разложения.

Но склонность бактерий к конкретному источнику питания может принести пользу обществу. К примеру, специалисты по искусствам из Италии обратились к бактериям, которые могут поедать избыточные слои соли и клея, снижающие долговечность бесценных художественных произведений. Умение бактерий перерабатывать органические вещества также очень полезно для Земли, как в почве, так и в воде.

Исходя из ежедневного опыта, вы хорошо знакомы с запахом, который вызывают бактерии, поглощающие содержимое вашей мусорной корзины, перерабатывая остатки пищи и испуская собственные газообразные побочные продукты. Однако этим все не ограничивается. Вы также можете обвинить бактерии в том, что они вызывают эти неловкие моменты, когда вы сами испускаете газы.

Одна большая семья

Бактерии растут и образуют колонии, когда выпадает шанс. Если еда и экологические условия являются благоприятными, они размножаются и образуют липкие скопления, так называемые биопленки, чтобы выжить на разных поверхностях - от горных пород до зубов вашего рта.

У биопленок есть свои плюсы и минусы. С одной стороны, они взаимовыгодны природным объектам (мутуализм). С другой же - они могут быть серьезной угрозой. К примеру, врачи, которые лечат пациентов с медицинскими имплантатами и устройствами, серьезно озабочены биопленками, поскольку они представляют собой этакую недвижимость для бактерий. После колонизации биопленки могут вырабатывать побочные продукты, которые токсичны - а иногда и смертельны - для человека.

Как и люди в городах, клетки в биопленке сообщаются друг с другом, обмениваются информацией о продуктах питания и потенциальной опасности. Но вместо того, чтобы звонить соседям по телефону, бактерии отправляют записки с помощью химических веществ.

Также бактерии не боятся жить самостоятельно. Некоторые виды разработали интересные способы, чтобы выживать в суровых условиях. Когда еды больше нет, а условия становятся невыносимыми, бактерии консервируют себя, создавая жесткую оболочку - эндоспору, которая помещает клетку в состояние покоя и сохраняет генетический материал бактерии.

Ученые находят бактерии в таких временных капсулах, которые хранились и 100, и даже 250 миллионов лет. Это говорит о том, что бактерии могут самостоятельно храниться в течение длительного времени.

Теперь, когда мы знаем, какие возможности предоставляют колонии бактериям, давайте разберемся, как они попадают туда - путем деления и размножения.

Размножение бактерий

Как бактерии создают колонии? Как и другим формам жизни на Земле, бактериям нужно самокопироваться, чтобы выживать. Другие организмы делают это путем полового размножения, но не бактерии. Но сначала давайте обсудим, почему разнообразие - это хорошо.

Жизнь проходит естественный отбор, ну или селективные силы определенной среды позволяют одному типу процветать и размножаться больше, чем другому. Возможно, вы помните, что гены - это механизм, который инструктирует клетку, что ей делать, и определяет, какого цвета будут ваши волосы и глаза. Вы получаете гены от своих родителей. Половое размножение приводит к мутациям, или случайным изменениям в ДНК, что создает разнообразие. Чем больше генетического разнообразия, тем больше шансов, что организм сможет приспособиться к ограничениям окружающей среды.

Для бактерий воспроизводство не зависит от встречи с правильным микробом; они просто копируют собственную ДНК и делятся на две идентичных клетки. Этот процесс, называемый двоичным делением, происходит, когда одна бактерия делится на две, копируя ДНК и передавая ее обеим частям разделенной клетки.

Поскольку в конечном итоге рожденная клетка будет идентична той, из которой была рождена, такой метод размножения не самый лучший для создания разнообразного генофонда. Как же бактерии приобретают новые гены?

Оказывается, бактерии используют хитрый трюк: горизонтальный перенос генов, или обмен генетическим материалом без воспроизводства. Есть несколько способов, которые используют бактерии для этого. Один способ включает сбор генетического материала из окружающей среды вне клетки - из других микробов и бактерий (через молекулы под названием плазмиды). Другой способ - вирусы, которые используют бактерии в качестве дома. Заражая новую бактерию, вирусы оставляют генетический материал предыдущей бактерии в новой.

Обмен генетическим материалом дает бактериям гибкость к адаптации, и они адаптируются, если чувствуют стрессовые изменения в окружающей среде, такие как нехватка продовольствия или химические изменения.

Понимание того, как адаптируются бактерии, чрезвычайно важно для борьбы с ними и создания антибиотиков в медицине. Бактерии могут обмениваться генетическим материалом так часто, что порой лечение, которое работало раньше, уже не работает.

Ни высоких гор, ни большой глубины

Если задаться вопросом «где бактерии?», проще спросить «где бактерий нет?».

Бактерии обнаруживаются практически везде на Земле. Невозможно представить количество бактерий на планете одновременно, но по некоторым оценкам их число составляет (бактерий и архей вместе) 5 октиллионов - это число с 27 нулями.

Классификация видов бактерий чрезвычайно сложна по понятным причинам. Сейчас есть примерно 30 000 официально идентифицированных видов, но база знаний постоянно растет, и есть мнения, что перед нами только верхушка айсберга от всех видов бактерий.

Правда в том, что бактерии были вокруг на протяжении очень долгого времени. Они породили одни из самых древних окаменелостей, которым 3,5 миллиарда лет. Результаты научных исследований позволяют предположить, что цианобактерии начали создавать кислород примерно 2,3-2,5 миллиарда лет назад в мировом океане, насытив атмосферу Земли кислородом, которым мы дышим по сей день.

Бактерии могут выживать в воздухе, воде, почве, льде, на жаре, на растениях, в кишечнике, на коже - везде.

Некоторые бактерии являются экстремофилами, то есть могут противостоять экстремальным условиям, когда либо очень жарко или холодно, либо отсутствуют питательные вещества и химикаты, которые мы обычно ассоциируем с жизнью. Исследователи обнаружили такие бактерии в Марианской впадине, самой глубокой точке на Земле на дне Тихого океана, возле гидротермальных источников в воде и во льду. Встречаются также бактерии, которые любят высокую температуру - такие, например, окрашивают опалесцирующий бассейн в Йеллоустонском национальном парке.

Плохие (для нас)

Хотя бактерии делают важный вклад в здоровье человека и планеты, у них есть и темная сторона. Некоторые бактерии могут быть патогенными, то есть вызывать заболевания и болезни.

На протяжении истории человечества некоторые бактерии (понятно почему) получили плохую репутацию, вызвав панику и истерию. Взять, к примеру, чуму. Бактерия, вызывающая чуму - чумная палочка Yersinia pestis - не только убила более 100 миллионов человек, но и, возможно, внесла свой вклад в распад Римской империи. До появления антибиотиков, лекарств, которые способствуют борьбе с бактериальными инфекциями, их было очень сложно остановить.

Даже сегодня эти патогенные бактерии серьезно нас пугают. Благодаря выработке устойчивости к антибиотикам, бактерии, вызывающие сибирскую язву, пневмонию, менингит, холеру, сальмонеллез, ангину и прочие болезни, которые еще и остаются рядом с нами, всегда представляют опасность для нас.

Особенно верно это для золотистого стафилококка, бактерии, ответственной за стафилококковые инфекции. Эта «сверхбактерия» приводит к появлению многочисленных проблем в клиниках, поскольку пациенты весьма часто подхватывают эту инфекцию при внедрении медицинских имплантатов и катетеров.

Мы уже говорили о естественном отборе и о том, что некоторые бактерии вырабатывают разнообразные гены, которые помогают им справиться с условиями окружающей среды. Если у вас есть инфекция, и некоторые из бактерий в вашем теле отличаются от других, антибиотики могут поразить большую часть популяции бактерий. Но те бактерии, которые выживут, выработают устойчивость к лекарству и останутся, дожидаясь следующего шанса. Поэтому врачи рекомендуют завершать курс антибиотиков до конца, да и вообще обращаться к ним как можно реже, только в крайнем случае.

Биологическое оружие - еще один пугающий аспект этой беседы. Бактерий можно использовать как оружие в некоторых случаях, в частности, сибирскую язву так и использовали в одно время. Кроме того, не только люди страдают от бактерий. Отдельный вид - Halomonas titanicae - проявил аппетит к затонувшему океанскому лайнеру «Титаник», разъедая металл исторического корабля.

Конечно, бактерии могут приносить не только вред.

Героические бактерии

Давайте изучим хорошую сторону бактерий. В конце концов, эти микробы подарили нам такие вкусные продукты, как сыр, пиво, закваску и другие ферментированные элементы. Они также улучшают здоровье людей и используются в медицине.

Отдельных бактерий можно поблагодарить за формирование человеческой эволюции. Наука собирает все больше данных о микрофлоре - микроорганизмах, которые живут в наших телах, особенно в пищеварительной системе и кишечнике. Исследования показывают, что бактерии, новые генетические материалы и разнообразие, которое они приносят в наши тела, позволяют людям адаптироваться к новым источникам пищи, которые раньше не использовались.

Посмотрим на это с другой стороны: выстилая поверхность вашего желудка и кишечника, бактерии «работают» на вас. Когда вы едите, бактерии и другие микробы помогают вам разбивать и добывать питательные вещества из пищи, особенно углеводы. Чем разнообразнее бактерии, которых мы потребляем, тем больше разнообразия получают наши тела.

Хотя наши знания о наших же микробах весьма скудны, есть основания полагать, что отсутствие некоторых микробов и бактерий в организме может быть связано со здоровьем, метаболизмом и восприимчивости к аллергенам человека. Предварительные исследования на мышах показали, что метаболические заболевания вроде ожирения связаны с разнообразием и здоровой микрофлорой, а не нашей преобладающей точкой зрения «калории приходят, калории уходят».

Сейчас активно исследуются возможности внедрения определенных микробов и бактерий в организм человека, которые могут дать определенные преимущества, однако на момент написания статьи общие рекомендации по их использованию пока не были установлены.

Кроме того, бактерии сыграли важную роль в развитии научной мысли и человеческой медицины. Бактерии сыграли ведущую роль в развитии постулатов Коха 1884 года, которые привели к общему пониманию того, что болезни вызываются определенным видом микробов.

Исследователи, изучавшие бактерии, случайно открыли пенициллин - антибиотик, который спас множество жизней. Также совсем недавно в связи с этим был открыт легкий способ редактировать геном организмов, который может осуществить революцию в медицине.

По сути, мы только начинаем понимать, как извлекать пользу из нашего сожительства с этими маленькими друзьями. К тому же непонятно, кто истинный хозяин Земли: люди или микробы.

Бактерии — самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Поскольку это были первые представители живой природы, их тело имело примитивное строение.

Со временем их строение усложнилось, но и поныне бактерии считаются наиболее примитивными одноклеточными организмами. Интересно, что некоторые бактерии и сейчас ещё сохранили примитивные черты своих древних предков. Это наблюдается у бактерий, обитающих в горячих серных источниках и бескислородных илах на дне водоёмов.

Большинство бактерий бесцветно. Только немногие окрашены в пурпурный или в зелёный цвет. Но колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в окружающую среду или пигментированием клеток.

Первооткрывателем мира бактерий был Антоний Левенгук — голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп, увеличивающую предметы в 160-270 раз.

Бактерии относят к прокариотам и выделяют в отдельное царство — Бактерии.

Форма тела

Бактерии — многочисленные и разнообразные организмы. Они различаются по форме.

Название бактерии Форма бактерии Изображение бактерии
Кокки Шарообразная
Бацилла Палочковидная
Вибрион Изогнутая в виде запятой
Спирилла Спиралевидная
Стрептококки Цепочка из кокков
Стафилококки Грозди кокков
Диплококки Две круглые бактерии, заключённые в одной слизистой капсуле

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других — на двух или по всей поверхности.

Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

Место обитания

В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде: в капле даже самой чистой родниковой воды, в крупинках почвы, в воздухе, на скалах, в полярных снегах, песках пустынь, на дне океана, в добытой с огромной глубины нефти и даже в воде горячих источников с температурой около 80ºС. Обитают они на растениях, плодах, у различных животных и у человека в кишечнике, ротовой полости, на конечностях, на поверхности тела.

Бактерии — самые мелкие и самые многочисленные живые существа. Благодаря малым размерам они легко проникают в любые трещины, щели, поры. Очень выносливы и приспособлены к различным условиям существования. Переносят высушивание, сильные холода, нагревание до 90ºС, не теряя при этом жизнеспособность.

Практически нет места на Земле, где не встречались бы бактерии, но в разных количествах. Условия жизни бактерий разнообразны. Одним из них необходим кислород воздуха, другие в нём не нуждаются и способны жить в бескислородной среде.

В воздухе: бактерии поднимаются в верхние слои атмосферы до 30 км. и больше.

Особенно много их в почве. В 1 г. почвы могут содержаться сотни миллионов бактерий.

В воде: в поверхностных слоях воды открытых водоёмов. Полезные водные бактерии минерализуют органические остатки.

В живых организмах: болезнетворные бактерии попадают в организм из внешней среды, но лишь в благоприятных условиях вызываю заболевания. Симбиотические живут в органах пищеварения, помогая расщеплять и усваивать пищу, синтезируют витамины.

Внешнее строение

Клетка бактерии одета особой плотной оболочкой — клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи — капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула — не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Внутреннее строение

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота — ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

В центральной части клетки локализовано ядерное вещество — ДНК, не отграниченная от цитоплазмы мембраной. Это аналог ядра — нуклеоид. Нуклеоид не обладает мембраной, ядрышком и набором хромосом.

Способы питания

У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы — организмы, способные самостоятельно образовывать органические вещества для своего питания.

Растения нуждаются в азоте, но сами усваивают азот воздуха не могут. Некоторые бактерии соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

Корни дают бактериям углеводы, а бактерии корням — такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

Корни растений выделяют много органических веществ (сахара, аминокислоты и другие), которыми питаются бактерии. Поэтому в слое почвы, окружающем корни, поселяется особенно много бактерий. Эти бактерии превращают отмершие остатки растений в доступные для растения вещества. Этот слой почвы называют ризосферой.

Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня:

  • через повреждения эпидермальной и коровой ткани;
  • через корневые волоски;
  • только через молодую клеточную оболочку;
  • благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты;
  • благодаря стимуляции синтеза В-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений.

Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз:

  • инфицирование корневых волосков;
  • процесс образования клубеньков.

В большинстве случаев внедрившаяся клетка, активно размножается, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина.

Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные. К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Бактерии клубеньков создают десятки и сотни килограммов азотных удобрений на гектаре почвы.

Обмен веществ

Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода, у других — без его участия.

Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

Бактерии впитывают вещества извне, разрывают их молекулы на части, из этих частей собирают свою оболочку и пополняют своё содержимое (так они растут), а ненужные молекулы выбрасывают наружу. Оболочка и мембрана бактерии позволяет ей впитывать только нужные вещества.

Если бы оболочка и мембрана бактерии были полностью непроницаемыми, в клетку не попали бы никакие вещества. Если бы они были проницаемыми для всех веществ, содержимое клетки перемешалось бы со средой — раствором, в которой обитает бактерия. Для выживания бактерии необходима оболочка, которая нужные вещества пропускает, а ненужные — нет.

Бактерия поглощает находящиеся близ неё питательные вещества. Что происходит потом? Если она может самостоятельно передвигаться (двигая жгутик или выталкивая назад слизь), то она перемещается, пока не найдёт необходимые вещества.

Если она двигаться не может, то ждёт, пока диффузия (способность молекул одного вещества проникать в гущу молекул другого вещества) не принесёт к ней необходимые молекулы.

Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Превращая различные соединения, они получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий разнообразны.

Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счёт неорганических соединений. Они называются автотрофами. Автотрофные бактерии способны синтезировать органические вещества из неорганических. Среди них различают:

Хемосинтез

Использование лучистой энергии — важнейший, но не единственный путь создания органического вещества из углекислого газа и воды. Известны бактерии, которые в качестве источника энергии для такого синтеза используют не солнечный свет, а энергию химических связей, происходящих в клетках организмов при окислении некоторых неорганических соединений — сероводорода, серы, аммиака, водорода, азотной кислоты, закисных соединений железа и марганца. Образованное с использованием этой химической энергии органическое вещество они используют для построения клеток своего тела. Поэтому такой процесс называют хемосинтезом.

Важнейшую группу хемосинтезирующих микроорганизмов составляют нитрифицирующие бактерии. Эти бактерии живут в почве и осуществляют окисление аммиака, образовавшегося при гниении органических остатков, до азотной кислоты. Последняя, реагирует с минеральными соединениями почвы, превращаются в соли азотной кислоты. Этот процесс проходит в две фазы.

Железобактерии превращают закисное железо в окисное. Образованная гидроокись железа оседает и образует так называемую болотную железную руду.

Некоторые микроорганизмы существуют за счёт окисления молекулярного водорода, обеспечивая тем самым автотрофный способ питания.

Характерной особенностью водородных бактерий является способность переключаться на гетеротрофный образ жизни при обеспечении их органическими соединениями и отсутствии водорода.

Таким образом, хемоавтотрофы являются типичными автотрофами, так как самостоятельно синтезируют из неорганических веществ необходимые органические соединения, а не берут их в готовом виде от других организмов, как гетеротрофы. От фототрофных растений хемоавтотрофные бактерии отличаются полной независимостью от света как источника энергии.

Бактериальный фотосинтез

Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты — бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка — карбоновые кислоты), а у зелёных растений — вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

6СО 2 +12Н 2 S+hv → С6Н 12 О 6 +12S=6Н 2 О

Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.

Спорообразование

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий.

Споры — не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий — это приспособление к выживанию в неблагоприятных условиях.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес — 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Бактерия (1), поглотившая достаточно пищи, увеличивается в размерах (2) и начинает готовиться к размножению (делению клетки). Её ДНК (у бактерии молекула ДНК замкнута в кольцо) удваивается (бактерия производит копию этой молекулы). Обе молекулы ДНК (3,4) оказываются, прикреплены к стенке бактерии и при удлинении бактерии расходятся в стороны (5,6). Сначала делится нуклеотид, затем цитоплазма.

После расхождения двух молекул ДНК на бактерии появляется перетяжка, которая постепенно разделяет тело бактерии на две части, в каждой из которых есть молекула ДНК (7).

Бывает (у сенной палочки), две бактерии слипаются, и между ними образуется перемычка (1,2).

По перемычке ДНК из одной бактерии переправляется в другую (3). Оказавшись в одной бактерии, молекулы ДНК сплетаются, слипаются в некоторых местах (4), после чего обмениваются участками (5).

Роль бактерий в природе

Круговорот

Бактерии — важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Эти вещества возвращаются в почву с отмершими грибами, растениями и трупами животных. Бактерии разлагают сложные вещества на простые, которые снова используют растения.

Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

Почвообразование

Поскольку бактерии распространены практически повсеместно и встречаются в огромном количестве, они во многом определяют различные процессы, происходящие в природе. Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

Некоторые почвенные бактерии способны поглощать азот из воздуха, используя его в процессах жизнедеятельности. Эти азотофиксирующие бактерии живут самостоятельно или поселяются в корнях бобовых растений. Проникнув в корни бобовых, эти бактерии вызывают разрастание клеток корней и образование на них клубеньков.

Эти бактерии выделяют азотные соединения, которые используют растения. От растений бактерии получают углеводы и минеральные соли. Таким образом, между бобовым растением и клубеньковыми бактериями существует тесная связь, полезная как одному, так и другому организму. Это явление носит название симбиоза.

Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

Распространение в природе

Микроорганизмы распространены повсеместно. Исключение составляют лишь кратеры действующих вулканов и небольшие площадки в эпицентрах взорванных атомных бомб. Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жёсткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы — аборигены нашей планеты, активно осваивающие самые невероятные природные субстраты.

Микрофлора почвы

Количество бактерий в почве чрезвычайно велико — сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв.

На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.

Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора — один из факторов образования почв.

Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов

Вода — природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается.

Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая — 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные.

По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха

Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека

Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками — прекрасная среда для развития микроорганизмов.

Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре.

Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Бактерии в круговороте веществ

Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным. Различные этапы круговорота элементов осуществляются организмами разного типа. Существование каждой отдельной группы организмов зависит от химического превращения элементов, осуществляемого другими группами.

Круговорот азота

Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Свыше 90% общей фиксации азота обусловлено метаболической активностью определённых бактерий.

Круговорот углерода

Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии осуществляют полное окисление органических веществ. В аэробных условиях органические соединения первоначально расщепляются путём сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода (нитрат, сульфат или СО 2).

Круговорот серы

Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

Круговорот железа

В некоторых водоёмах с пресной водой содержатся в высоких концентрациях восстановленные соли железа. В таких местах развивается специфическая бактериальная микрофлора — железобактерии, окисляющие восстановленное железо. Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа.

Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они - первые организмы, появившиеся на Земле.

Организм бактерии представлен одной единственной клеткой. Формы бактерий разнообразны. Строение бактерий отличается от строения клеток животных и растений.

В клетке отсутствует ядро, митохондрии и пластиды. Носитель наследственной информации ДНК, расположена в центре клетки в свернутом виде. Микроорганизмы, которые не имеют настоящего ядра, относятся к прокариотам. Все бактерии — прокариоты.

Предполагается, что на земле существует свыше миллиона видов этих удивительных организмов. К настоящему времени описано около 10 тыс. видов.

Бактериальная клетка имеет стенку, цитоплазматическую мембрану, цитоплазму с включениями и нуклеотид. Из дополнительных структур некоторые клетки имеют жгутики, пили (механизм для слипания и удержания на поверхности) и капсулу. При неблагоприятных условиях некоторые бактериальные клетки способны образовывать споры. Средний размер бактерий 0,5-5 мкм.

Внешнее строение бактерий

Рис. 1. Строение бактериальной клетки.

Клеточная стенка

  • Клеточная стенка бактериальной клетки является для нее защитой и опорой. Она придает микроорганизму свою, специфическую форму.
  • Клеточная стенка проницаема. Через нее проходят питательные вещества внутрь и продукты обмена (метаболизма) наружу.
  • Некоторые виды бактерий вырабатывают специальную слизь, которая напоминает капсулу, предохраняющую их от высыхания.
  • У некоторых клеток имеются жгутики (один или несколько) или ворсинки, которые помогают им передвигаться.
  • У бактериальных клеток, которые при окрашивании по Граму приобретают розовую окраску (грамотрицательные ), клеточная стенка более тонкая, многослойная. Ферменты, благодаря которым происходит расщепление питательных веществ, выделяются наружу.
  • У бактерий, которые при окрашивании по Граму приобретают фиолетовую окраску (грамположительные ), клеточная стенка толстая. Питательные вещества, которые поступают в клетку, расщепляются в периплазматическом пространстве (пространство между клеточной стенкой и мембраной цитоплазмы) гидролитическими ферментами.
  • На поверхности клеточной стенки имеются многочисленные рецепторы. К ним прикрепляются убийцы клеток — фаги, колицины и химические соединения.
  • Липопротеиды стенки у некоторых видов бактерий являются антигенами, которые называются токсинами.
  • При длительном лечении антибиотиками и по ряду других причин некоторые клетки теряют оболочку, но сохраняют способность к размножению. Они приобретают округлую форму — L-форму и могут длительно сохраняться в организме человека (кокки или палочки туберкулеза). Нестабильные L-формы обладают способностью принимать первоначальный вид (реверсия).

Рис. 2. На фото строение бактериальной стенки грамотрицательных бактерий (слева) и грамположительных (справа).

Капсула

При неблагоприятных условиях внешней среды бактерии образуют капсулу. Микрокапсула плотно прилегает к стенке. Ее можно увидеть только в электронном микроскопе. Макрокапсулу часто образуют патогенные микробы (пневмококки). У клебсиеллы пневмонии макрокапсула обнаруживаются всегда.

Рис. 3. На фото пневмококк. Стрелками указана капсула (электронограмма ультратонкого среза).

Капсулоподобная оболочка

Капсулоподобная оболочка представляет собой образование, непрочно связанное с клеточной стенкой. Благодаря бактериальным ферментам капсулоподобная оболочка покрывается углеводами (экзополисахаридами) внешней среды, благодаря чему обеспечивается слипание бактерий с разными поверхностями, даже совершенно гладкими.

Например, стрептококки, попадая в организм человека, способны слипаться с зубами и сердечными клапанами.

Функции капсулы многообразны:

  • защита от агрессивных условий внешней среды,
  • обеспечение адгезии (слипанию) с клетками человека,
  • обладая антигенными свойствами, капсула оказывает токсический эффект при внедрении в живой организм.

Рис. 4. Стрептококки способны слипаться с эмалью зубов и вместе с другими микробами являются причиной кариеса.

Рис. 5. На фото поражение митрального клапана при ревматизме. Причина — стрептококки.

Жгутики

  • У некоторых бактериальных клеток имеются жгутики (один или несколько) или ворсинки, которые помогают передвигаться. В составе жгутиков находится сократительный белок флагелин.
  • Количество жгутиков может быть разным — один, пучок жгутиков, жгутики на разных концах клетки или по всей поверхности.
  • Движение (беспорядочное или вращательное) осуществляется в результате вращательного движения жгутиков.
  • Антигенные свойства жгутиков оказывают токсический эффект при заболевании.
  • Бактерии, не имеющие жгутиков, покрываясь слизью, способны скользить. У водных бактерий содержатся вакуоли в количестве 40 — 60, наполненные азотом.

Они обеспечивают погружение и всплытие. В почве бактериальная клетка передвигается по почвенным каналам.

Рис. 6. Схема прикрепления и работы жгутика.

Рис. 7. На фото разные типы жгутиковых микробов.

Рис. 8. На фото разные типы жгутиковых микробов.

Пили

  • Пили (ворсинки, фимбрии) покрывают поверхность бактериальных клеток. Ворсинка представляет собой винтообразно скрученную тонкую полую нить белковой природы.
  • Пили общего типа обеспечивают адгезию (слипание) с клетками хозяина. Их количество огромно и составляет от нескольких сотен до нескольких тысяч. С момента прикрепления начинается любой .
  • Половые пили способствуют переносу генетического материала от донора реципиенту. Их количество от 1 до 4-х на одну клетку.

Рис. 9. На фото кишечная палочка. Видны жгутики и пили. Фото сделано при помощи туннельного микроскопа (СТМ).

Рис. 10. На фото видны многочисленные пили (фимбрии) у кокков.

Рис. 11. На фото бактериальная клетка с фимбриями.

Цитоплазматическая мембрана

  • Цитоплазматическая мембрана располагается под клеточной стенкой и представляет собой липопротеин (до 30% липидов и до 70% протеинов).
  • У разных бактериальных клеток разный липидный состав мембран.
  • Мембранные белки выполняют множество функций. Функциональные белки представляют собой ферменты, благодаря которым на цитоплазматической мембране происходит синтез разных ее компонентов и др.
  • Цитоплазматическая мембрана состоит из 3-х слоев. Двойной фосфолипидный слой пронизан глобулинами, которые обеспечивают транспорт веществ в бактериальную клетку. При нарушении ее работы клетка погибает.
  • Цитоплазматическая мембрана принимает участие в спорообразовании.

Рис. 12. На фото отчетливо видна тонкая клеточная стенка (КС), цитоплазматическая мембрана (ЦПМ) и нуклеотид в центре (бактерия Neisseria catarrhalis).

Внутреннее строение бактерий

Рис. 13. На фото строение бактериальной клетки. Строение клетки бактерии отличается от строения клеток животных и растений — в клетке отсутствует ядро, митохондрии и пластиды.

Цитоплазма

Цитоплазма на 75% состоит из воды, остальные 25% приходится на минеральные соединения, белки, РНК и ДНК. Цитоплазма всегда густая и неподвижная. В ней содержатся ферменты, некоторые пигменты, сахара, аминокислоты, запас питательных веществ, рибосомы, мезосомы, гранулы и всевозможные другие включения. В центре клетки концентрируется вещество, которое несет наследственную информацию — нуклеоид.

Гранулы

Гранулы состоят из соединений, которые являются источником энергии и углерода.

Мезосомы

Мезосомы — производные клетки. Имеют разную форму — концентрические мембраны, пузырьки, трубочки, петли и др. Мезосомы имеют связь с нуклеоидом. Участие в делении клетки и спорообразовании — их основное предназначение.

Нуклеоид

Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

Рис. 14. На фото срез бактериальной клетки. В центральной части виден нуклеотид.

Плазмиды

Плазмиды представляют собой автономные молекулы, свернутые в кольцо, двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рис. 15. На фото бактериальная плазмида. Фото сделано с помощью электронного микроскопа.

Рибосомы

Рибосомы бактериальной клетки участвуют в синтезе белка из аминокислот. Рибосомы бактериальных клеток не объединены в эндоплазматическую сеть, как у клеток, имеющих ядро. Именно рибосомы часто становятся «мишенью» для многих антибактериальных препаратов.

Включения

Включения — продукты метаболизма ядерных и безъядерных клеток. Представляют собой запас питательных веществ: гликоген, крахмал, сера, полифосфат (валютин) и др. Включения часто при окраске приобретают иной вид, чем цвет красителя. По валютину можно диагностировать .

Формы бактерий

Форма бактериальной клетки и ее размер имеет большое значение при их идентификации (распознании). Самые распространенные формы — шаровидная, палочковидная и извитая.

Таблица 1. Основные формы бактерий.

Шаровидные бактерии

Шаровидные бактерии называют кокками (от греческого coccus — зерно). Располагаются по одному, по двое (диплококки), пакетами, цепочками и как гроздья винограда. Данное расположение зависит от способа деления клетки. Самые вредные микробы — стафилококки и стрептококки.

Рис. 16. На фото микрококки. Бактерии круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

Рис. 17. На фото бактерии диплококки — Streptococcus pneumoniae.

Рис. 18. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

Рис. 19. На фото бактерии стрептококки (от греческого «стрептос» — цепочка).

Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

Рис. 20. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

Палочковидные бактерии

Палочковидные бактерии, образующие споры, называются бациллами. Они имеют цилиндрическую форму. Самым ярким представителем этой группы является бацилла . К бациллам относятся чумные и гемофильные палочки. Концы палочковидных бактерий могут быть заострены, закруглены, обрублены, расширены или расщеплены. Форма самих палочек может быть правильной и неправильной. Они могут располагаться по одной, по две или образовывать цепочки. Некоторые бациллы называют коккобациллами, так как они имеют округлую форму. Но, все же, их длина превышает ширину.

Диплобациллы — сдвоенные палочки. Сибиреязвенные палочки образовывают длинные нити (цепочки).

Образование спор изменяет форму бацилл. В центре бацилл споры образуются у маслянокислых бактериях, придавая им вид веретена. У столбнячных палочек — на концах бацилл, придавая им вид барабанных палочек.

Рис. 21. На фото бактериальная клетка палочковидной формы. Видны множественные жгутики. Фото сделано с помощью электронного микроскопа. Негатив.

Рис. 22. На фото бактерии палочковидной формы, образующие цепочки (сибиреязвенные палочки).

Бактерии – это микроорганизмы, состоящие всего из одной клетки. Характерная особенность бактерий – отсутствие четко выраженного ядра. Именно поэтому их называют «прокариоты», что означает – безъядерные.

Сейчас науке известно примерно десять тысяч видов бактерий, но имеется предположение, что на земле существует более миллиона видов бактерий. Считается, что бактерии – самые древние организмы на Земле. Они живут практически везде – в воде, почве, атмосфере и внутри других организмов.

Внешний вид

Бактерии имеют очень маленькие размеры, и увидеть их можно только в микроскоп. Форма бактерий довольно разнообразна. Наиболее распространенные формы – в виде палочек, шариков и спиралек.

Палочковидные бактерии называют «бациллами».

Бактерии в виде шариков – это кокки.

Бактерии в виде спиралек – это спириллы.

От формы бактерии зависит ее подвижность и способность прикрепляться к той или иной поверхности.

Строение бактерий

Бактерии имеют довольно простое строение. У этих организмов выделяют несколько основных структур – нуклеоид, цитоплазму, мембрану и клеточную стенку, кроме этого, у многих бактерий на поверхности имеются жгутики.

Нуклеоид – это подобие ядра, в нем содержится генетический материал бактерии. Он состоит всего из одной хромосомы, имеющей вид кольца.

Цитоплазма окружает нуклеоид. В цитоплазме расположены важные структуры – рибосомы, необходимые бактерии для синтеза белка.

Мембрана, покрывающая цитоплазму снаружи, играет важную роль в жизнедеятельности бактерии. Она отграничивает внутреннее содержимое бактерии от внешней среды и обеспечивает процессы обмена клетки с окружающей средой.

Снаружи мембрана окружена клеточной стенкой .

Количество жгутиков может быть разным. В зависимости от вида на одной бактерии бывает от одного до тысячи жгутиков, но встречаются бактерии и без них. Жгутики нужны бактериям для передвижения в пространстве.

Питание бактерий

Для бактерий характерно два вида питания. Одна часть бактерий – это автотрофы, а другая – гетеротрофы.

Автотрофы сами создают питательные вещества путем химических реакций, а гетеротрофы питаются органическими веществами, которые создали другие организмы.

Размножение бактерий

Размножаются бактерии делением. Перед процессом деления хромосома, расположенная внутри бактерии, удваивается. Потом клетка делится надвое. В результате получается две одинаковые дочерние клетки, каждая из которых получает копию материнской хромосомы.

Значение бактерий

Бактерии играют важнейшую роль в круговороте веществ в природе – они превращают органические остатки в неорганические вещества. Если бы не было бактерий, то вся земля покрылась бы поваленными деревьями, опавшими листьями и погибшими животными.

В жизни человека бактерии играют двоякую роль. Одни бактерии приносят большую пользу, а другие наносят существенный вред.

Многие бактерии являются болезнетворными и вызывают различные заболевания, например такие, как дифтерия, тиф, чума, туберкулез, холера и другие.

Однако есть бактерии, приносящие пользу людям. Так в пищеварительной системе человека живут бактерии, которые способствуют нормальному пищеварению. А молочнокислые бактерии издавна используются людьми для производства молочнокислых продуктов – сыров, йогурта, кефира и т.д. При квашении овощей и производстве уксуса бактерии также играют важную роль.

Бактерии краткая информация.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама