THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В ухе у человека имеется особая мышца, напрягающая барабанную перепонку. Благодаря ей создаются условия для передачи и восприятия звука. Иными словами, этот крошечный элемент обеспечивает работу слуховой системы. Чтобы лучше понимать принцип её работы, следует подробно рассмотреть механизм её функционирования и место локализации.

Расположение мышцы

Для начала разберемся со строением уха и выясним, где именно находится эта мышца. Она является составляющим элементом среднего уха.

Ее научное название — musculus tensor tympani, что в переводе с латыни означает «мышца, которая напрягает барабанную перепонку».

Одним своим концом она прикрепляется к хрящевому каналу среднего уха. По виду и форме эта мышца представляет собой тонкий длинный пучок волокон в мышечно-трубном канале. Ближе к основной части полости она слегка изгибается и крепится к рукоятке молоточка. Так она приводит в действие одну из основных слуховых косточек.

Примерная область расположения данной мышцы приходится на верхнюю часть височной кости и опускается до преддверия возле барабанной перепонки. Она пересекает среднюю ушную полость латерально и фиксируется на шейке молоточка.

Выполняемые функции и принцип работы

Благодаря этой напрягающей мышце производится важнейшая функция – передача звуковых сигналов. Принцип выполнения этого процесса состоит в следующем:

  • Звуковые колебания поступают в ухо, улавливаясь преимущественно наружной его частью.
  • В среднем ухе создаются колебания. Посредством воздействия третьей ветви тройничного нерва и отростка, мышца получает нервный импульс.
  • Сокращение волокон приводит к оттяжению рукоятки молоточка, приводя косточку в движение.

Таким образом, звуковые колебания передаются механически непосредственно к овальному окну преддверия. Обратный процесс смещения выполняет мышца-антагонист, соединенная со стременем.

Полноценное функционирование этих элементов направлено на выполнение и некоторых других функций:

  • сохранение тонуса слуховых косточек и непосредственно самой барабанной перепонки;
  • адаптация органов звуковосприятия к внешним сигналам разной частоты и громкости;
  • защита барабанной перепонки и внутренних связей от перегрузки под воздействием сверхнагрузок.

Если мышца и сопутствующие элементы находятся в нормальном состоянии, человек способен адекватно воспринимать звуковую информацию, поступающую извне. При нарушении функционирования и целостности связи ухудшается слух, а при развитии деструктивных процессов может наступить полная глухота.

Связь с другими элементами

Как и любой другой элемент человеческого организма, мышца, которая приводит в движение барабанную перепонку, имеет тесную связь и с другими частями органа слуха. Так как она располагается в средней полости органа, непосредственный контакт происходит с другими его составляющими.

Главным образом эта мышца образует связь со слуховыми косточками. Одна связка присоединяется к начальной части рукоятки молоточка. Благодаря этому происходит передача импульса при поступлении в ухо звуковых волн. Прикрепленное к молоточку сухожилие оттягивает его рукоятку, вследствие чего барабанная перепонка напрягается и приходит в движение.

Из-за того, что мембрана напрягается и молоточек смещает свое положение, происходит дальнейшая цепная реакция, которая затрагивает всю костную связку среднего уха. Отражение этих действий происходит на обратной стороне, а именно на входе в окно преддверия. Здесь располагается стремечко, которое соединяется с наковальней. Средний элемент передает сигнал от молоточка. В итоге стремечко приводится в движение мышцей-антагонистом. Ее называют стременной и она вызывает обратную реакцию.

Мышца m. stapedis крепится к задней ножке стремени. Во время сокращения она ослабляет движение на основание стремени, расположенного в окне преддверия.

Благодаря сложной системе связей внутри среднего уха осуществляется прием и дальнейшая передача звуковых сигналов как по механическому принципу, так и костным путем. При нарушении работы мышцы, связанной с барабанной перепонкой, под угрозой оказывается вся дальнейшая цепочка. Нарушение тонуса, появление новообразований мягких тканей, скопление выделений в среднем ухе и разрастание эпителия способны заблокировать нормальную работу системы. В итоге человек утрачивает способность нормально слышать, а при прогрессировании нарушений и причин, вызвавших их, существует риск полной утраты слуха.

При проведении манипуляций в среднем ухе врач должен соблюдать предельную точность и осторожность, так как любое повреждение столь хрупкой и миниатюрной мышцы – это огромный риск. Именно поэтому при необходимости хирургического вмешательства следует ответственно подходить к выбору специалиста, который будет проводить операцию и следить за вашим дальнейшим лечением.

Выполняет функцию, которая имеет большое значение для полноценной жизнедеятельности человека. Поэтому есть смысл изучить его строение более детально.

Анатомия ушей

Анатомическое строение ушей, а также их составных частей оказывает значительное влияние на качество слуха. От полноценной работы этой функции напрямую зависит речь человека. Поэтому чем здоровее ухо, тем легче человеку осуществлять процесс жизнедеятельности. Именно эти особенности и обуславливают тот факт, что правильная анатомия уха имеет большое значение.

Изначально рассматривать строение органа слуха стоит начать с ушной раковины, которая первая бросается в глаза тем, кто не искушен в теме анатомии человека. Расположена она между сосцевидным отростком с задней стороны и височным нижнечелюстным суставом спереди. Именно благодаря ушной раковине восприятие звуков человеком является оптимальным. К тому же именно эта часть уха имеет немаловажное косметическое значение.

В качестве основы ушной раковины можно определить пластинку хряща, толщина которого не превышает 1 мм. С обеих сторон она покрыта кожей и надхрящницей. Анатомия уха также указывает и на тот факт, что единственной частью раковины, лишенной хрящевого остова, является мочка. Она состоит из покрытой кожей жировой клетчатки. Ушная раковина имеет выпуклую внутреннюю часть и вогнутую наружную, кожа которой плотно сращена с надхрящницей. Говоря о внутренней части раковины, стоит отметить, что в этой области соединительная ткань развита значительно заметней.

Стоит отметить и тот факт, что две трети длины наружного слухового прохода занимает перепончато-хрящевой отдел. Что касается костного отдела, то ему достается лишь третья часть. В качестве основы перепончато-хрящевого отдела выступает продолжение хряща ушной раковины, который имеет вид открытого сзади желоба. Его хрящевой остов прерывают идущие вертикально санториниевые щели. Они закрываются фиброзной тканью. Граница слухового прохода и находится именно в том месте, где расположены данные щели. Именно этот факт объясняет возможность развития заболевания, появившегося в наружном ухе, в области околоушной железы. Стоит понимать, что данное заболевание может распространяться и в обратном порядке.

Тем, для кого актуальна информация в рамках темы «анатомия ушей», стоит обратить внимание и на тот факт, что перепончато-хрящевой отдел соединяется с костной частью наружного слухового прохода посредством фиброзной ткани. Наиболее узкую часть можно обнаружить в средине данного отдела. Называется она перешейком.

В пределах перепончато-хрящевого отдела кожа содержит серные и сальные железы, а также волосы. Именно из секрета этих желез, равно как и чешуек эпидермиса, который был отторгнут, образуется ушная сера.

Стенки наружного слухового прохода

Анатомия ушей включает информацию и о различных стенках, которые расположены в наружном проходе:

  • Верхняя костная стенка. Если в этой части черепа происходит перелом, то его следствием может быть ликворея и кровотечение из слухового прохода.
  • Передняя стенка. Она находится на границе с височно-челюстным суставом. Передача движений самой челюсти идет на перепончато-хрящевую часть наружного прохода. Резкие болезненные ощущения могут сопровождать процесс жевания в том случае, если в области передней стенки присутствуют воспалительные процессы.

  • Анатомия уха человека касается изучения и задней стенки наружного слухового прохода, которая отделяет последний от сосцевидных ячеек. В основании именно этой стенки проходит лицевой нерв.
  • Нижняя стенка. Эта часть наружного прохода отграничивает его от слюнной околоушной железы. По сравнению с верхней она длиннее на 4-5 мм.

Иннервация и кровоснабжение органов слуха

На эти функции необходимо обратить внимание в обязательном порядке тем, кто изучает строение уха человека. Анатомия органа слуха включает подробную информацию о его иннервации, которая осуществляется посредством тройничного нерва, ушной ветви блуждающего нерва, а также При этом именно задний ушной нерв обеспечивает снабжение нервами рудиментарных мышц ушной раковины, хотя их функциональную роль можно определить, как достаточно низкую.

Касаясь темы кровоснабжения стоит отметить, что подача крови обеспечивается из системы наружной сонной артерии.

Снабжение кровью непосредственно самой ушной раковины производится при помощи поверхностной височной и задней ушной артерии. Именно эта группа сосудов совместно с ветвью верхнечелюстной и задней ушной артерии обеспечивают кровоток в глубоких отделах уха и барабанной перепонки в частности.

Хрящ получает питание от сосудов, расположенных в надхрящнице.

В рамках такой темы, как «Анатомия и физиология уха», стоит рассмотреть процесс венозного оттока в этой части тела и движение лимфы. Венозная кровь уходит из уха по задней ушной и задненижней-челюстной вене.

Что касается лимфы, то ее отток из наружного уха осуществляется посредством узлов, которые находятся в сосцевидном отростке спереди от козелка, а также под нижней стенкой слухового наружного прохода.

Барабанная перепонка

Эта часть органа слуха выполняет функцию разделения наружного и среднего уха. По сути, речь идет о полупрозрачной фиброзной пластинке, которая достаточно прочна и напоминает форму овала.

Без этой пластинки не сможет полноценно функционировать ухо. Анатомия строение барабанной перепонки раскрывает достаточно детально: её размер равен приблизительно 10 мм, ширина ее при этом составляет 8-9 мм. Интересным является тот факт, что у детей эта часть органа слуха почти такая же, как и у взрослых. Единственное отличие сводится к ее форме - в раннем возрасте она округлая и ощутимо толще. Если взять за ориентир ось наружного слухового прохода, то по отношению к ней барабанная перепонка расположена косо, под острым углом (приблизительно 30°).

Стоит отметить, что данная пластина находится в желобке волокнисто-хрящевого барабанного кольца. Под воздействием звуковых волн барабанная перепонка начинает дрожать и передает колебания в среднее ухо.

Барабанная полость

Клиническая анатомия среднего уха включает информацию о его строении и функциях. К этой части органа слуха относится равно как и слуховая трубка с системой воздухоносных ячеек. Сама полость - это щелевидное пространство, в котором можно различить 6 стенок.

Более того, в среднем ухе находится три ушные косточки - наковаленка, молоточек и стремечко. Соединяются они при помощи маленьких суставчиков. При этом молоточек находится в непосредственной близости к барабанной перепонке. Именно он отвечает за восприятие звуковых волн, переданных перепонкой, под воздействием которых молоточек начинает дрожать. Впоследствии вибрация передается наковаленке и стремечку, а далее на нее реагирует внутреннее ухо. Такова анатомия ушей человека в средней их части.

Как устроено внутреннее ухо

Эта часть органа слуха находится в области височной кости и внешне напоминает лабиринт. В данной части полученные звуковые колебания превращаются в электрические импульсы, которые направляются в головной мозг. Лишь после полного завершения этого процесса человек способен реагировать на звук.

Важно обратить внимание и на тот факт, что во внутреннем ухе человека содержатся полукружные каналы. Это актуальная информация для тех, кто изучает строение уха человека. Анатомия этой части органа слуха имеет вид трех трубок, которые изогнуты в форме дуги. Они располагаются в трех плоскостях. По причине патологии данного отдела уха возможны нарушения в работе вестибулярного аппарата.

Анатомия звукообразования

Когда энергия звука попадает во внутреннее ухо, она преобразуется в импульсы. При этом по причине особенностей строения уха звуковая волна распространяется очень быстро. Следствием этого процесса является возникновение способствующего сдвигу покровной пластинки. В результате происходит деформация стереоцилий волосковых клеток, которые, придя в состояние возбуждения, при помощи сенсорных нейронов передают информацию.

Заключение

Нетрудно заметить, что строение уха человека является достаточно сложным. По этой причине важно следить за тем, чтобы орган слуха оставался здоровым и не допускать развитие заболеваний, обнаруженных в данной области. В противном случае можно столкнуться с такой проблемой, как нарушение восприятия звука. Для этого при первых же симптомах, даже если они незначительны, рекомендуется нанести визит к врачу с высокой квалификацией.

И морфологи эту структуру называют органелуха и равновесия (organum vestibulo-cochleare). В нем выделяют три отдела:

  • наружное ухо (наружный слуховой проход, ушная раковина с мышцами и связками);
  • среднее ухо (барабанная полость, сосцевид­ные придатки, слуховая труба)
  • (перепон­чатый лабиринт, располагающийся в костном лабиринте внутри пирамиды кости).

1. Наружное ухо концентрирует звуковые колебания и направляет их в наружное слуховое отверстие.

2. В слуховой канал проводит звуковые колебания к барабанной перепонке

3. Барабанная перепонка – это мембрана, которая вибрирует под действием звука.

4. Молоточек своей рукояткой прикреплен к центру барабанной перепонки при помощи связок, а его головка соединяется с наковальней (5), которая, в свою очередь, прикреплена к стремени (6).

Крошечные мышцы способствуют передаче звука, регулируя движение этих косточек.

7. Евстахиева (или слуховая) труба соединяет среднее ухо с носоглоткой. При изменении давления окружающего воздуха давление по обе стороны барабанной перепонки выравнивается через слуховую трубу.

Kортиев орган состоит из ряда чувствительных, снабженных волосками клеток (12), которые покрывают базилярную мембрану (13). Звуковые волны улавливаются волосковыми клетками и преобразуются в электрические импульсы. Далее эти электрические импульсы передаются по слуховому нерву (11) в головной . Слуховой нерв состоит из тысяч тончайших нервных волокон. Каждое волокно начинается от определенного участка улитки и передает определенную звуковую частоту. Низкочастотные звуки, передаются по волокнам, исходящим из верхушки улитки (14), а высокочастотные – по волокнам, связанным с ее основанием. Таким образом, функцией внутреннего уха является преобразование механических колебаний в электрические, так как мозг может воспринимать только электрические сигналы.

Наружное ухо является звукоулавливающим аппаратом. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой тонкую (0,1 мм) перегородку, имеющую форму направленной внутрь воронки. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход.

Звуковые колебания улавливаются ушными раковинами (у животных они могут поворачиваться к источнику звука) и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами - так называемый бинауральный слух - имеет значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятитысячных долей секунды (0.0006 с) раньше, чем до другого. Этой ничтожной разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают соединенные друг с другом 3 слуховые косточки - молоточек, наковальня и стремячко, а последнеe через перпонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе, - перилимфе.

Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке.

При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздражителя и предохраняя внутреннее ухо от разрушения.

Благодаря соединению через слуховую трубу воздушной полости среднего уха с полостью носоглотки возникает возможность выравнивания давления по обе стороны барабанной перепонки, что предотвращает ее разрыв при значительных изменениях давления во внешней среде - при погружениях под воду, подъемах на высоту, выстрелах и пр. Это барофункция уха.

В среднем ухе расположены две мышцы: напрягающая барабанную перепонку и стременная. Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремечко и тем самым ограничивает его движения. Рефлекторное сокращение этих мышц наступает через 10 мс после начала сильного звука и зависит от его амплитуды. Этим внутреннее ухо автоматически предохраняется от перегрузок. При мгновенных сильных раздражениях (удары, взрывы и т. д.) этот защитный механизм не успевает сработать, что может привести к нарушениям слуха (например, у взрывников и артиллеристов).

Внутреннее ухо является звуковоспринимаюшцм аппаратом. Оно расположено в пирамидке височной кости и содержит улитку, которая у человека образует 2.5 спиральных витка. Улитковый канал разделен двумя перегородками основной мембраной и вестибулярной мембраной на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость его заполнена жидкостью - пери-лимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимаюший аппарат- Кортиев орган, в котором находятся механорецепторы звуковых колебаний - волосковые клетки.

Основным путем доставки звуков к уху является воздушный. Подошедший звук колеблет барабанную перепонку, и далее через цепь слуховых косточек колебания передаются на овальное окно. Одновременно возникают и колебания воздуха барабанной полости, которые передаются на мембрану круглого окна.

Другим путем доставки звуков к улитке является тканевая или костная проводимость . При этом звук непосредственно действует на поверхность черепа, вызывая его колебания. Костный путь передачи звуков приобретает большое значение, если вибрирующий предмет (например, ножка камертона) соприкасается с черепом, а также при заболеваниях системы среднего уха, когда нарушается передача звуков через цепь слуховых косточек. Кроме воздушного пути, проведения звуковых волн существует тканевый, или костный, путь.

Под влиянием воздушных звуковых колебаний, а также при соприкосновении вибраторов (например, костного телефона или костного камертона) с покровами головы кости черепа приходят в колебание (начинает колебаться и костный лабиринт). На основании последних данных (Бекеши - Bekesy и др.) можно допустить, что звуки, распространяющиеся по костям черепа, только в том случае возбуждают кортиев орган, если они, аналогично воздушным волнам, вызывают выгибание определенного участка основной мембраны.

Способность костей черепа проводить звук объясняет, почему самому человеку его голос, записанный на магнитофонную пленку, при воспроизведении записи кажется чужим, в то время как другие его легко узнают. Дело в том, что магнитофонная запись воспроизводит ваш голос не полностью. Обычно, разговаривая, вы слышите не только те звуки, которые слышат и ваши собеседники (т. е. те звуки, которые воспринимаются благодаря воздушно-жидкостной проводимости), но и те низкочастотные звуки, проводником которых являются кости вашего черепа. Однако слушая магнитофонную запись собственного голоса, вы слышите только то, что можно было записать, - звуки, проводником которых является воздух.

Бинауральный слух . Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии бинаурального слуха, или слушания двумя ушами. Для него важно и наличие двух симметричных половин на всех уровнях . Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах есть с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве.

Ухо состоит из трех отделов: наружного, среднего и внутреннего. Наружное и среднее ухо проводят звуковые колебания к внутреннему уху и являются звукопроводящим аппаратом. Внутреннее ухо образует орган слуха и равновесия.

Наружное ухо состоит из ушной раковины, наружного слухового прохода и барабанной перепонки, которые предназначены для улавливания, проведения звуковых колебаний к среднему уху.

Ушная раковина состоит из эластического хряща, покрытого кожей. Хрящ отсутствует только в мочке уха. Свободный край раковины завернут, и называется завитком, а параллельно ему расположен противозавиток. У переднего края ушной раковины выделяют выступ – козелок, а сзади него располагается противокозелок.

Наружный слуховой проход представляет собой короткий S-образно изогнутый канал длиной 35-36 мм. Состоит из хрящевой части (1/3 длины) и костной (остальные 2/3 длины). Хрящевая часть переходит в костную под углом. Поэтому при обследовании слухового прохода его необходимо выпрямить.

Наружный слуховой проход выстлан кожей, содержащий сальные и серные железы, выделяющие серу. Проход заканчивается барабанной перепонкой.

Барабанная перепонка – это тонкая полупрозрачная овальная пластинка, которая находится на границе наружного и среднего уха. Она стоит косо по отношению к оси наружного слухового прохода. Снаружи барабанная перепонка покрыта кожей, а внутри выстлана слизистой оболочкой.

Среднее ухо включает барабанную полость и слуховую (евстахиеву) трубу.

Барабанная полость расположена в толще пирамиды височной кости и представляет собой небольшое пространство кубовидной формы, объемом около 1см 3 .

Изнутри барабанная полость выстлана слизистой оболочкой и заполнена воздухом. В ней лежат 3 слуховые косточки; молоточек, наковальня и стремечко, связки и мышцы. Все косточки соединены между собой посредством сустава и покрыты слизистой оболочкой.

Молоточек своей рукояткой сращен с барабанной перепонкой, а головкой соединяется с наковальней, которая в свою очередь подвижно соединена со стремечком.

Значение слуховых косточек состоит в передаче звуковых волн от барабанной перепонки к внутреннему уху.

Барабанная полость имеет 6 стенок:

1. Верхняя покрышечная стенка отделяет барабанную полость от полости черепа;

2. Нижняя яремная стенка отделяет полость от наружного основания черепа;

3. Передняя сонная отделяет полость от сонного канала;

4. Задняя сосцевидная стенка отделяет барабанную полость от сосцевидного отростка

5. Латеральная стенка - это сама барабанная перепонка

6. Медиальная стенка отделяет среднее ухо от внутреннего уха. На ней имеются 2 отверстия:


- овальное - окно преддверия, прикрыто стремечком.

- круглое - окно улитки, прикрыто вторичной барабанной перепонкой.

Барабанная полость с помощью слуховой трубы сообщается с носоглоткой.

Слуховая труба - это узкий канал длиной примерно 35 мм, шириной 2 мм. Состоит из хрящевой и костной частей.

Слуховая труба выстлана мерцательным эпителием. Она служит для поступления воздуха из глотки в барабанную полость и поддерживает в полости давление, одинаковое с внешним, что очень важно для нормальной работы звукопроводящего аппарата. Через слуховую трубу может переходить инфекция из полости носа в среднее ухо.

Воспаление слуховой трубы называется евстахиитом.

Внутреннее ухо расположено в толще пирамиды височной кости и отделено от барабанной полости ее медиальной стенкой. В его состав входит костный лабиринт и вставленный в него перепончатый лабиринт.

Костный лабиринт представляет собой систему полостей и состоит из 3 отделов: преддверия, улитки и полукружных каналов.

Преддверие - это полость небольших размеров и неправильной формы, занимающая центральное положение. Она сообщается с барабанной полостью при помощи овального и круглого отверстия. Кроме этого в преддверии имеется 5 мелких отверстий, с помощью которых оно сообщается с улиткой и полукружными каналами.

Улитка представляет собой извитый спиральный канал, который образует 2,5 оборота вокруг оси улитки и заканчивается слепо. Ось улитки лежит горизонтально и называется костным стержнем улитки. Вокруг стержня обвивается костная спиральная пластинка.

Полукружные каналы - представлены 3-мя дугообразными трубками, лежащими в трех взаимно перпендикулярных плоскостях: сагиттальной, фронтальной, горизонтальной.

Перепончатый лабиринт - располагается внутри костного, по форме напоминает его, но имеет меньший размер. Стенка перепончатого лабиринта состоит из тонкой соединительнотканной пластинки, покрытой плоским эпителием. Между костным и перепончатым лабиринтом существует пространство, заполненное жидкостью - перилимфой. Сам перепончатый лабиринт заполнен эндолимфой и представляет собой замкнутую систему полостей и каналов.

В перепончатом лабиринте выделяют эллиптический и сферический мешочки, три полукружных протока и улитковый проток.

Эллиптический мешочек пятью отверстиями сообщается с полукружным протоком, а сферический - с улитковым протоком.

На внутренней поверхности сферического и эллиптического мешочков (маточка) и полукружных протоков имеются волосковые (чувствительные) клетки, покрытые желеобразным веществом. Эти клетки воспринимают колебания эндолимфы при движениях, поворотах, наклонах головы. Раздражение этих клеток передается на преддверную частью VIII пары ЧМН, а затем к ядрам продолговатого мозга и мозжечка, далее в корковый отдел, т.е. в височную долю большого мозга.

На поверхности чувствительных клеток находится большое количество кристаллических образований, состоящих из карбоната кальция (Са). Эти образования называются отолитами . Они участвуют в возбуждении волосковых чувствительных клеток. При изменении положения головы изменяется давление отолитов на рецепторные клетки, что вызывает их возбуждение. Волосковые чувствительные клетки (вестибулорецепторы), сферического, эллиптического мешочков (или маточки) и трех полукружных протоков составляют вестибулярный (отолитовый) аппарат.

Улитковый проток имеет треугольную форму и образован вестибулярной и основной (базилярной) мембраной.

На стенках улиткового протока, а именно на базилярной мембране имеются рецепторные волосковые клетки (слуховые клетки с ресничками), колебания которых передаются на улитковую часть VIII пары ЧМН, а далее по этому нерву импульсы достигают слухового центра, находящегося в височной доле.

Кроме волосковых клеток на стенках улиткового протока находятся сенсорные (рецепторные) и поддерживающие (опорные) клетки, воспринимающие колебания перилимфы. Клетки, находящиеся на стенке улиткового протока образуют слуховой спиральный орган (кортиев орган).

22114 0

Поперечный разрез периферического отдела слуховой системы подразделяется на наружное, среднее и внутреннее ухо.

Наружное ухо

Наружное ухо состоит из двух основных компонентов: ушной раковины и наружного слухового прохода. Оно выполняет различные функции. Прежде всего, длинный (2,5 см) и узкий (5-7 мм) наружный слуховой проход выполняет защитную функцию.

Во-вторых, наружное ухо (ушная раковина и наружный слуховой проход) имеют собственную резонансную частоту. Так, наружный слуховой проход у взрослых имеет резонансную частоту, равную приблизительно 2500 Гц, в то время как ушная раковина - равную 5000 Гц. Это обеспечивает усиление поступающих звуков каждой из этих структур на их резонансной частоте до 10-12 дБ. Усиление или увеличение в уровне звукового давления за счет наружного уха может быть продемонстрировано гипотетически экспериментом.

Используя два миниатюрных микрофона, при расположении одного у ушной раковины, а другого - у барабанной перепонки, можно определить этот эффект. При предъявлении чистых тонов различной частоты интенсивностью, равной 70 дБ УЗД (при измерении микрофоном, расположенным у ушной раковины), на уровне барабанной перепонки будут определены уровни.

Так, на частотах ниже 1400 Гц у барабанной перепонки определяется УЗД, равный 73 дБ. Эта величина лишь на 3 дБ выше уровня, измеряемого у ушной раковины. При повышении частоты эффект усиления значительно увеличивается и достигает максимальной величины, равной 17 дБ, на частоте 2500 Гц. Функция отражает роль наружного уха в качестве резонатора или усилителя высокочастотных звуков.

Расчетные изменения звукового давления, создаваемого источником, расположенным в свободном звуковом поле, в месте измерения: ушная раковина, наружный слуховой проход, барабанная перепонка (результирующая кривая) (по Shaw, 1974)


Резонанс наружного уха был определен при расположении источника звука непосредственно перед исследуемым на уровне глаз. При поднимании источника звука над головой завал на частоте 10 кГц смещается в сторону высоких частот, а пик кривой резонанса расширяется и перекрывает больший частотный диапазон. При этом каждая линия отображает различные утлы смещения источника звука. Таким образом, наружное ухо обеспечивает "кодирование" смещения объекта в вертикальной плоскости, выраженное в амплитуде спектра звука и, особенно, на частотах выше 3000 Гц.


Кроме того, четко продемонстрировано, что частотнозависимое повышение УЗД при измерении в свободном звуковом поле и у барабанной перепонки обусловлено в основном эффектами ушной раковины и наружного слухового прохода.

И, наконец, наружное ухо выполняет также локализационную функцию. Расположение ушной раковины обеспечивает наиболее эффективное восприятие звуков от источников, расположенных перед исследуемым. Ослабление же интенсивности звуков, исходящих от источника, расположенного позади испытуемого, и лежит в основе локализации. И, прежде всего, это относится к звукам высоких частот, имеющих короткие длины волн.

Таким образом, к основным функциям наружного уха относятся:
1. защитная;
2. усиление высокочастотных звуков;
3. определение смещения источника звука в вертикальной плоскости;
4. локализация источника звука.

Среднее ухо

Среднее ухо состоит из барабанной полости, клеток сосцевидного отростка, барабанной перепонки, слуховых косточек, слуховой трубы. У человека барабанная перепонка имеет коническую форму с эллиптическими контурами и площадью около 85 мм2 (лишь 55 мм2 из которых подвержены воздействию звуковой волны). Большая часть барабанной перепонки, pars tensa, состоит из радиальных и циркулярных коллагеновых волокон. При этом центральный фиброзный слой является наиболее важным в структурном отношении.

С помощью метода голографии было установлено, что барабанная перепонка колеблется не как единое целое. Ее колебания неравномерно распределены по ее площади. В частности, между частотами 600 и 1500 Гц имеются два выраженных участка максимального смещения (максимальной амплитуды) колебаний. Функциональное значение неравномерного распределения колебаний по поверхности барабанной перепонки продолжает изучаться.

Амплитуда колебаний барабанной перепонки при максимальной интенсивности звука по данным, полученным голографическим методом, равна 2x105 см, в то время как при пороговой интенсивности стимула она равна 104 см (измерения Дж. Бекеши). Колебательные движения барабанной перепонки достаточно сложны и неоднородны. Так, наибольшая амплитуда колебаний при стимуляции тоном частотой 2 кГц имеет место ниже umbo. При стимуляции низкочастотными звуками точка максимального смещения соответствует задневерхнему отделу барабанной перепонки. Характер колебательных движений усложняется при увеличении частоты и интенсивности звука.

Между барабанной перепонкой и внутренним ухом располагаются три косточки: молоточек, наковальня и стремя. Непосредственно с перепонкой соединяется рукоятка молоточка, в то время как головка его находится в контакте с наковальней. Длинный отросток наковальни, а, именно, его лентикулярный отросток, соединяется с головкой стремени. Стремя, самая маленькая косточка у человека, состоит из головки, двух ножек и подножной пластинки, располагающейся в окне преддверия и фиксирующейся в нем при помощи аннулярной связки.

Таким образом, непосредственная связь барабанной перепонки с внутренним ухом осуществляется через цепь трех слуховых косточек. К среднему уху относятся также две мышцы, располагающиеся в барабанной полости: мышца, натягивающая барабанную перепонку (т.tensor tympani) и имеющая длину до 25 мм, и стременная мышца (т.stapedius), длина которой не превышает 6 мм. Сухожилие стременной мышцы прикрепляется к головке стремени.

Отметим, что акустический стимул, достигнувший барабанной перепонки, может передаваться через среднее ухо к внутреннему уху тремя путями: (1) путем костного звукопроведения через кости черепа непосредственно к внутреннему уху, минуя среднее ухо; (2) через воздушное пространство среднего уха и (3) через цепь слуховых косточек. Как будет продемонстрировано ниже, наиболее эффективным является третий путь звукопроведения. Однако, обязательным условием при этом является уравнивание давления в барабанной полости с атмосферным, что и осуществляется при нормальном функционировании среднего уха через слуховую трубу.

У взрослых слуховая труба направлена книзу, что обеспечивает эвакуацию жидкостей из среднего уха в носоглотку. Таким образом, слуховая труба осуществляет две основные функции: во-первых, через нее выравнивается давление воздуха по обе стороны барабанной перепонки, что является обязательным условием для вибрации барабанной перепонки, и, во-вторых, слуховая труба обеспечивает дренажную функцию.

Выше указывалось, что звуковая энергия передается от барабанной перепонки через цепь слуховых косточек (подножную пластинку стремени) к внутреннему уху. Однако, если предположить, что звук передается непосредственно через воздух к жидкостям внутреннего уха, необходимо напомнить о большей величине сопротивления жидкостей внутреннего уха, по сравнению с воздухом. Каково же значение косточек?

Если представить себе двух людей, пытающихся общаться, когда один находится в воде, а другой на берегу, то следует иметь в виду, что порядка 99,9% звуковой энергии будут потеряны. Это означает, что около 99,9% энергии будут поражены и лишь 0,1% звуковой энергии достигнет жидкой среды. Отмеченная потеря соответствует снижению звуковой энергии приблизительно на 30 дБ. Возможные потери компенсируются средним ухом посредством двух следующих механизмов.

Как было отмечено выше, эффективной в плане передачи звуковой энергии является поверхность барабанной перепонки, площадью в 55 мм2. Площадь же подножной пластинки стремени, находящейся в непосредственном контакте с внутренним ухом, составляет около 3,2 мм2. Давление может быть определено как сила, приложенная к единице площади. И, если сила приложенная к барабанной перепонке, равна силе, достигающей подножной пластинки стремени, то давление у подножной пластинки стремени будет больше звукового давления, измеренного у барабанной перепонки.

Это означает, что различие в площадях барабанной перепонки к подножной пластинки стремени обеспечивает усиление давления, измеренного у подножной пластинки, в 17 раз (55/3,2), что в децибелах соответствует 24,6 дБ. Таким образом, если при непосредственной передаче из воздушной среды в жидкостную теряются около 30 дБ, то благодаря различиям в площадях поверхности барабанной перепонки и подножной пластинки стремени отмеченная потеря компенсируется на 25 дБ.

Передаточная функция среднего уха, демонстрирующая увеличение давления в жидкостях внутреннего уха, по сравнению с давлением на барабанную перепонку, на различных частотах, выраженная в дБ (по von Nedzelnitsky, 1980)


Передача энергии от барабанной перепонки к подножной пластинке стремени зависит от функционирования слуховых косточек. Косточки действуют подобно рычажной системе, что, прежде всего, определяется тем, что длина головки и шейки молоточка больше длины длинного отростка наковальни. Эффект же рычажной системы косточек соответствует 1,3. Дополнительное усиление энергии, поступающей к подножной пластинке стремени, обусловливается конической формой барабанной перепонки, что при ее вибрации сопровождается увеличением усилий, приложенных к молоточку, в 2 раза.

Все изложенное выше свидетельствует о том, что энергия, приложенная к барабанной перепонке, при достижении подножной пластинки стремени усиливается в 17x1,3x2=44,2 раза, что соответствует 33 дБ. Однако, безусловно, усиление, имеющее место между барабанной перепонкой и подножной пластинкой, зависит от частоты стимуляции. Так, следует, что на частоте 2500 Гц увеличение давления соответствует 30 дБ и выше. Выше этой частоты коэффициент усиления уменьшается. Кроме того, следует подчеркнуть, что отмеченные выше резонансный диапазон раковины и наружного слухового прохода обусловливают достоверное усиление в широком частотном диапазоне, что весьма существенно для восприятия звуков, подобных речи.

Неотъемлемой частью рычажной системы среднего уха (цепи слуховых косточек) являются мышцы среднего уха, которые, обычно находятся в состоянии натяжения. Однако при предъявлении звука интенсивностью в 80 дБ по отношению к порогу слуховой чувствительности (ПЧ) происходит рефлекторное сокращение стременной мышцы. При этом звуковая энергия, передаваемая через цепь слуховых косточек, ослабляется. Величина этого ослабления составляет 0,6-0,7 дБ на каждый децибел увеличения интенсивности стимула над порогом акустического рефлекса (около 80 дБ ПЧ).

Ослабление составляет от 10 до 30 дБ для громких звуков и более выражено на частотах ниже 2 кГц, т.е. имеет частотную зависимость. Время рефлекторного сокращения (латентный период рефлекса) колеблется от минимальных значений, равных 10 мс, при предъявлении высокоинтенсивных звуков, до 150 мс - при стимуляции звуками относительно низкой интенсивности.

Другой функцией мышц среднего уха является ограничение искажений (нелинейностей). Это обеспечивается как наличием эластических связок слуховых косточек, так и непосредственным сокращением мышц. С анатомических позиций интересно отметить, что мышцы располагаются в узких костных каналах. Это предотвращает вибрацию мышц при стимуляции. В противном случае имели бы место гармонические искажения, которые передавались бы к внутреннему уху.

Движения слуховых косточек неодинаковы на различных частотах и уровнях интенсивности стимуляции. Благодаря размерам головки молоточка и тела наковальни их масса равномерно распределена вдоль оси, проходящей через две большие связки молоточка и короткого отростка наковальни. На средних уровнях интенсивности цепь слуховых косточек движется таким образом, что подножная пластинка стремени совершает колебания вокруг оси, мысленно проведенной вертикально через заднюю ножку стремени, подобно дверям. Передняя часть подножной пластинки входит и выходит из улитки подобно пистону.

Подобные движения возможны благодаря асимметричной длине аннулярной связки стремени. На очень низких частотах (ниже 150 Гц) и на очень высоких интенсивностях характер вращательных движений резко изменяется. Так новая ось вращения становится перпендикулярной отмеченной выше вертикальной оси.

Движения стремени приобретают качательный характер: оно колеблется подобно детским качелям. Это выражается тем, что когда одна половина подножной пластинки погружается в улитку, другая движется в противоположном направлении. В результате этого гасятся перемещения жидкостей внутреннего уха. На очень высоких уровнях интенсивности стимуляции и частотах, превышающих 150 Гц, подножная пластинка стремени осуществляет одновременно вращения вокруг обеих осей.

Благодаря столь сложным ротационным движениям дальнейшее повышение уровня стимуляции сопровождается лишь незначительными движениями жидкостей внутреннего уха. Именно эти сложные движения стремени и защищают внутреннее ухо от чрезмерной стимуляции. Однако в экспериментах на кошках было продемонстрировано, что стремя совершает пистонообразные движения при стимуляции низкими частотами даже при интенсивности 130 дБ УЗД. При 150 дБ УЗД добавляются вращательные движения. Однако, учитывая то, что мы сегодня имеем дело с тугоухостью, обусловленной воздействием производственного шума, можно заключить, что ухо человека не обладает истинно адекватными защитными механизмами.

При изложении основных свойств акустических сигналов в качестве существенной их характеристики был рассмотрен акустический импеданс. Физические свойства акустического сопротивления или импеданса проявляется в полной мере в функционировании среднего уха. Импеданс или акустическое сопротивление среднего уха складывается из компонентов, обусловленных жидкостями, косточками, мышцами и связками среднего уха. Составными частями его являются резистентность (истинное акустическое сопротивление) и реактивность (или реактивное акустическое сопротивление). Основным резистивным компонентом среднего уха является сопротивление, оказываемое жидкостями внутреннего уха подножной пластинке стремени.

Сопротивление, возникающее при смещении подвижных частей, также следует учитывать, однако величина его значительно меньше. Следует помнить, что резистивный компонент импеданса не зависит от частоты стимуляции, в отличие от реактивного компонента. Реактивность определяется двумя составляющими. Первая - это масса структур среднего уха. Она оказывает влияние, прежде всего на высокие частоты, что выражается в увеличении импеданса, обусловленного реактивностью массы при повышении частоты стимуляции. Вторая составляющая - свойства сокращения и растяжения мышц и связок среднего уха.

Когда мы говорим о том, что пружина легко растягивается, мы имеем в виду, что она податлива. Если же пружина растягивается с трудом, мы говорим о ее жесткости. Эти характеристики вносят наибольший вклад при низких частотах стимуляции (ниже 1 кГц). На средних частотах (1-2 кГц) оба реактивных компонента подавляют друг друга, и в импедансе среднего уха преобладает резистивный компонент.

Одним из способов измерения импеданса среднего уха является использование электроакустического моста. Если система среднего уха достаточно жестка, давление, в полости будет выше, чем при высокой податливости структур (когда звук абсорбируется барабанной перепонкой). Таким образом, звуковое давление, измеренное при помощи микрофона, может быть использовано для изучения свойств среднего уха. Часто импеданс среднего уха, измеренный при помощи электроакустического моста, выражается в единицах податливости. Это объясняется тем, что импеданс, как правило, измеряется на низких частотах (220 Гц), и в большинстве случаев измеряются лишь свойства сокращения и растяжения мышц и связок среднего уха. Итак, чем выше податливость, тем меньше импеданс и тем легче работает система.

При сокращении мышц среднего уха вся система становится менее податливой (т.е. более жесткой). С эволюционных позиций нет ничего странного в том, что при выходе из воды на сушу для нивелирования различий в сопротивлении жидкостей и структур внутреннего уха и воздушных полостей среднего уха эволюция предусмотрела передаточное звено, а именно цепь слуховых косточек. Однако, какими же путями передается звуковая энергия к внутреннему уху при отсутствии слуховых косточек?

Прежде всего, внутреннее ухо стимулируется непосредственно вибрациями воздуха в полости среднего уха. И опять-таки, из-за больших различий в импедансе жидкостей и структур внутреннего уха и воздуха жидкости смещаются лишь незначительно. Кроме того, при непосредственной стимуляции внутреннего уха посредством изменений звукового давления в среднем ухе, имеет место дополнительное ослабление передаваемой энергии за счет того, что одновременно задействуются оба входа к внутреннему уху (окно преддверия и окно улитки), а на некоторых частотах звуковое давление передается также и в фазе.

Учитывая то, что окно улитки и окно преддверия расположены по разные стороны от основной мембраны, положительное давление, приложенное к мембране окна улитки, будет сопровождаться отклонением основной мембраны в одну сторону, а давление, приложенное к подножной пластинке стремени - отклонением основной мембраны в противоположную сторону. При приложении к обоим окнам одновременно одинакового давления основная мембрана не будет перемещаться, что само по себе исключает восприятие звуков.

Снижение слуха, равное 60 дБ, часто определяется у больных, у которых отсутствуют слуховые косточки. Таким образом, следующей функцией среднего уха является обеспечение пути передачи стимула к овальному окну преддверия, что, в свою очередь, обеспечивает смещения мембраны окна улитки, соответствующие колебаниям давления во внутреннем ухе.

Другим путем стимуляции внутреннего уха является костное проведение звука, при котором изменения акустического давления вызывают вибрации костей черепа (прежде всего височной кости), и эти вибрации передаются непосредственно к жидкостям внутреннего уха. Из-за колоссальных различий в импедансе костей и воздуха стимуляция внутреннего уха за счет костного проведения не может рассматриваться как важная составляющая часть нормального слухового восприятия. Однако, если источник вибраций прикладывается непосредственно к черепу, внутренне ухо стимулируется за счет проведения звуков через кости черепа.

Различия в импедансе костей и жидкостей внутреннего уха весьма незначительны, что способствует частичной передаче звука. Измерение слухового восприятия при костном проведении звуков имеет большое практическое значение при патологии среднего уха.

Внутреннее ухо

Прогресс в изучении анатомии внутреннего уха определился развитием методов микроскопии и, в частности, трансмиссионной и сканирующей электронной микроскопии.


Внутреннее ухо млекопитающих состоит из ряда мембранозных мешков и протоков (формирующих мембранозный лабиринт), заключенных в костную капсулу (костный лабиринт), расположенную, в свою очередь, в твердой височной кости. Костный лабиринт подразделяется на три основные части: полукружные каналы, преддверие и улитку. В двух первых образованиях расположена периферическая часть вестибулярного анализатора, в улитке же расположен периферический отдел слухового анализатора.

Улитка у человека имеет 2 3/4 завитка. Самый большой завиток - это основной завиток, самый маленький - верхушечный завиток. К структурам внутреннего уха также относятся овальное окно, в котором расположена подножная пластинка стремени, и круглое окно. Улитка слепо заканчивается в третьем завитке. Центральная ось ее называется модиолюсом.

Поперечный разрез улитки, из которого следует, что улитка подразделена на три отдела: лестницу преддверия, а также барабанную и срединную лестницы. Спиральный канал улитки имеет длину 35 мм и частично разделяется по всему длиннику тонкой костной спиральной пластинкой, отходящей от модиолюса (osseus spiralis lamina). Продолжает ее, основная мембрана (membrana basilaris) соединяющаяся с наружной костной стенкой улитки у спиральной связки, завершая тем самым разделение канала (за исключением небольшого отверстия у верхушки улитки, называемого helicotrema).

Лестница преддверия простирается от овального окна, расположенного в преддверии, до helicotrema. Барабанная лестница простирается от круглого окна и также до helicotrema. Спиральная связка, являясь соединяющим звеном между основной мембраной и костной стенкой улитки, поддерживает в то же время и сосудистую полоску. Большая часть спиральной связки состоит из редких фиброзных соединений, кровеносных сосудов и клеток соединительной ткани (фиброцитов). Зоны же, расположенные вблизи от спиральной связки и спирального выступа, включают больше клеточных структур, а также большие митохондрии. Спиральный выступ отделяется от эндолимфатического пространства слоем эпителиальных клеток.


От костной спиральной пластинки кверху в диагональном направлении отходит тонкая Рейсснерова мембрана, прикрепляемая к наружной стенке улитки несколько выше основной мембраны. Она простирается вдоль всего хтинника улитки и соединяется с основной мембраной у helicotrema. Таким образом, формируется улитковый ход (ductus cochlearis) или, срединная лестница, ограниченный сверху Рейсснеровой мембраной, снизу -основной мембраной, и снаружи - сосудистой полоской.

Сосудистая полоска - это основная сосудистая зона улитки. Она имеет три основных слоя: маргинальный слой темных клеток (хромофилы), средний слой светлых клеток (хромофобы), а также основной слой. В пределах этих слоев проходит сеть артериол. Поверхностный слой полоски формируется исключительно из больших маргинальных клеток, которые содержат множество митохондрий и ядра которых расположены вблизи к эндолимфатической поверхности.

Маргинальные клетки составляют основную часть сосудистой полоски. Они имеют пальцеобразные отростки, обеспечивающие тесную связь с аналогичными отростками клеток срединного слоя. Базальные клетки прикрепляются к спиральной связке имеют плоскую форму и длинные отростки, проникающие в маргинальный и срединный слои. Цитоплазма базальных клеток аналогична цитоплазме фиброцитов спиральной связки.

Кровоснабжение сосудистой полоски осуществляется спиральной модиолярной артерией через сосуды, проходящие через лестницу преддверия к латеральной стенке улитки. Собирающие венулы, расположенные в стенке барабанной лестницы, направляют кровь в спиральную модиолярную вену. Сосудистая полоска осуществляет основной метаболический контроль улитки.

Барабанная лестница и лестница преддверия содержат жидкость, называемую перилимфой, в то время как срединная лестница содержит эндолимфу. Ионный состав эндолимфы соответствует составу, определяемому внутри клетки, и характеризуется высоким содержанием калия и низкой концентрацией натрия. Например, у человека концентрация Na равна 16 мМ; К - 144,2 мМ; Сl -114 мэкв/л. Перилимфа, наоборот, содержит высокие концентрации натрия и низкие концентрации калия (у человека Na - 138 мМ, К- 10,7 мМ, Сl - 118,5 мэкв/л) что по составу соответствует экстрацеллюлярной или спинномозговой жидкостям. Поддержание отмеченных различий в ионном составе эндо- и перилимфы обеспечивается наличием в мембранозном лабиринте эпителиальных пластов, имеющих множество плотных, герметичных соединений.


Большая часть основной мембраны состоит из радиальных волокон диаметром 18-25 мкм, формирующих компактный однородный слой, заключенный в гомогенную основную субстанцию. Структура основной мембраны существенно отличается от основания улитки к верхушке. У основания - волокна и покровный слой (со стороны барабанной лестницы) расположены более часто, по сравнению с верхушкой. Кроме того, в то время как костная капсула улитки уменьшается по направлению к верхушке, основная мембрана при этом расширяется.

Так у основания улитки основная мембрана имеет ширину 0,16 мм, в то время как у helicotrema ширина ее достигает 0,52 мм. Отмеченный структурный фактор лежит в основе градиента жесткости вдоль длинника улитки, определяющий распространение бегущей волны и способствующий пассивной механической настройке основной мембраны.


Поперечные разрезы органа Корти у основания (а) и верхушки (б) свидетельствуют о различиях в ширине и толщине основной мембраны, (в) и (г) - сканирующие электронные микрофотограммы основной мембраны (вид со стороны барабанной лестницы) у основания и верхушки улитки (д). Суммарные физические характеристики основной мембраны человека


Измерение различных характеристик основной мембраны легло в основу модели мембраны, предложенной Бекеши, описавшего в своей гипотезе слухового восприятия сложный паттерн ее движений. Из его гипотезы следует, что основная мембрана человека представляет собой толстый слой плотно расположенных волокон длиной порядка 34 мм, направленных от основания к helicotrema. Основная мембрана у верхушки шире, более мягкая и без какого-либо натяжения. Базальный конец ее уже, более жесткий, чем апикальный, может находиться в состоянии некоторого натяжения. Перечисленные факты представляют определенный интерес при рассмотрении вибраторных характеристик мембраны в ответ на акустическую стимуляцию.



ВВК- внутренние волосковые клетки; НВК - наружные волосковые клетки; НСК, ВСК - наружные и внутренние столбовые клетки; ТК - туннель Корти; ОС - основная мембрана; ТС - тимпанальный слой клеток ниже основной мембраны; Д, Г - опорные клетки Дейтерса и Гензена; ПМ - покровная мембрана; ПГ - полоска Гензена; КВБ - клетки внутренней бороздки; РВТ-радиальное нервное волокно туннеля


Таким образом, градиент жесткости основной мембраны обусловлен различиями в ширине ее, которая увеличивается по направлению к верхушке, толщине, которая уменьшается по направлению к верхушке, и анатомическим строением мембраны. Справа представлена базальная часть мембраны, слева -верхушечная. На сканирующих электронномикрограммах продемонстрирована структура основной мембраны со стороны барабанной лестницы. Четко определяются отличия в толщине и частоте расположения радиальных волокон между основанием и верхушкой.

В срединной лестнице на основной мембране расположен орган Корти. Наружные и внутренние столбовые клетки формируют внутренний туннель Корти, заполненный жидкостью, называемой кортилимфой. Кнутри от внутренних столбов располагается один ряд внутренних волосковых клеток (ВВК), а кнаружи от наружных столбов - три ряда клеток меньшего размера, называемых наружными волосковыми клетками (НВК), и опорные клетки.

,
иллюстрирующая опорную структуру органа Корти, состоящую из клеток Дейтерса (д) и их фалангеальных отростков (ФО) (опорная система наружного третьего ряда НВК (НВКЗ)). Фалангеальные отростки, отходящие от верхушки клеток Дейтерса, формируют часть ретикулярной пластинки у верхушки волосковых клеток. Стереоцилии (Сц) располагаются над ретикулярной пластинкой (по I.Hunter-Duvar)


Клетки Дейтерса и Гензена поддерживают НВК сбоку; аналогичную функцию, но по отношению к ВВК, выполняют пограничные клетки внутренней бороздки. Второй тип фиксации волосковых клеток осуществляется ретикулярной пластинкой, которая удерживает верхние концы волосковых клеток, обеспечивая их ориентацию. Наконец, третий тип осуществляется также клетками Дейтерса, но расположенными ниже волосковых клеток: одна клетка Дейтерса приходится на одну волосковую клетку.

Верхний конец цилиндрической клетки Дейтерса имеет чашеобразную поверхность, на которой и располагается волосковая клетка. От этой же поверхности отходит к поверхности органа Корти тонкий отросток, формирующий фалангеальный отросток и часть ретикулярной пластинки. Эти клетки Дейтерса и фалангеальные отростки и формируют основной вертикальный опорный механизм для волосковых клеток.

А. Трансмиссионная электрономикрофотограмма ВВК. Стереоцилии (Сц) ВВК проецируются в срединную лестницу (СЛ), а их основание погружено в кутикулярную пластинку (КП). Н - ядро ВВК, ВСП - нервные волокна внутреннего спирального узла; ВСК, НСК - внутренние и наружные столбовые клетки туннеля Корти (ТК); НО - нервные окончания; ОМ - основная мембрана
Б. Трансмиссионная электрономикрофотограмма НВК. Определяется четкое различие в форме НВК и ВВК. НВК располагается на углубленной поверхности клетки Дейтерса (Д). У основания НВК определяются эфферентные нервные волокна (Э). Пространство между НВК называется Нуэлевым пространством (НП) В пределах его определяются фалангеальные отростки (ФО)


Форма НВК и ВВК существенно отличается. Верхняя поверхность каждой ВВК покрыта кутикулярной мембраной, в которую погружены стереоцилии. Каждая ВВК имеет около 40 волосков, выстроенных в два или более рядов U-образной формы.

Свободным от кутикулярной пластинки остается лишь небольшой участок поверхности клетки, где и располагается базальное тело или измененная киноцилия. Базальное тело расположено у наружного края ВВК, в удалении от модиолюса.

Верхняя поверхность НВК содержит около 150 стереоцилий, расположенных в трех или более рядах V- или W-образной формы на каждой НВК.


Четко определяются один ряд ВВК и три ряда НВК. Между НВК и ВВК видны головки внутренних столбовых клеток (ВСК). Между верхушками рядов НВК определяются верхушки фалангеальных отростков (ФО). Опорные клетки Дейтерса (Д) и Гензена (Г) располагаются у наружного края. W-образная ориентация ресничек НВК наклонена по отношению к ВВК. При этом наклон различен для каждого ряда НВК (по I.Hunter-Duvar)


Верхушки самых длинных волосков НВК (в ряду, удаленном от модиолюса) находятся в контакте с гелеобразной покровной мембраной, которая может быть описана как бесклеточный матрикс, состоящий из золокон, фибрилл и гомогенной субстанции. Она простирается от спирального выступа к наружному краю ретикулярной пластинки. Толщина покровной мембраны увеличивается от основания улитки к верхушке.

Основная часть мембраны состоит из волокон диаметром 10-13 нм, исходящих от внутренней зоны и идущих под углом 30° к верхушечному завитку улитки. По направлению к наружным краям покровной мембраны волокна распространяются в продольном направлении. Средняя длина стереоцилий зависит от положения НВК вдоль длинника улитки. Так, у верхушки их длина достигает 8 мкм, в то время как у основания - не превышает 2 мкм.

Количество же стереоцилий уменьшается по направлению от основания к верхушке. Каждая стереоцилия имеет форму булавы, которая расширяется от основания (у кутикулярной пластинки - 130 нм) к верхушке (320 нм). Между стереоцилиями существует мощная сеть перекрестов, таким образом, большое количество горизонтальных соединений связывают стереоцилии, расположенные как в одном и том же, так и в разных рядах НВК (латерально и ниже верхушки). Кроме того, от верхушки более короткой стереоцилии НВК отходит тонкий отросток, соединяющийся с более длинной стереоцилией следующего ряда НВК.


ПС - перекрестные соединения; КП - кутикулярная пластинка; С - соединение в пределах ряда; К - корень; Сц - стереоцилия; ПМ - покровная мембрана


Каждая стереоцилия покрыта тонкой плазматической мембраной, под которой расположен цилиндрический конус, содержащий длинные волокна, направленные вдоль длинника волоска. Эти волокна состоят из актина и других структурных протеинов, находящихся в кристаллообразном состоянии и придающих ригидность стереоцилиям.

Я.А. Альтман, Г. А. Таварткиладзе



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама