THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Замечание 1

Логическую функцию можно записать с помощью логического выражения, а затем можно перейти к логической схеме. Упрощать логические выражения надо для того, чтобы получить как можно более простую (а значит, и более дешёвую) логическую схему. По сути, логическая функция, логическое выражение и логическая схема −это три разных языка, рассказывающие об одной сущности.

Для упрощения логических выражений используют законы алгебры логики .

Какие-то преобразования похожи на преобразования формул в классической алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), а другие преобразования основаны на свойствах, которыми операции классической алгебры не обладают (использование распределительного закона для конъюнкции, законов поглощения, склеивания, правил де Моргана и др.).

Законы алгебры логики формулируются для базовых логических операций - “НЕ” – инверсия (отрицание), “И” – конъюнкция (логическое умножение) и “ИЛИ” – дизъюнкция (логическое сложение).

Закон двойного отрицания означает, что операция “НЕ” обратима: если применить ее дважды, то в итоге логическое значение не изменится.

Закон исключенного третьего гласит, что любое логическое выражение либо истинно, либо ложно (“третьего не дано”). Поэтому если $A=1$, то $\bar{A}=0$ (и наоборот), а, значит, конъюнкция этих величин всегда равно нулю, а дизъюнкция равна единице.

$((A + B) → C) \cdot (B → C \cdot D) \cdot C.$

Упростим эту формулу:

Рисунок 3.

Отсюда следует, что $A = 0$, $B = 1$, $C = 1$, $D = 1$.

Ответ: в шахматы играют ученики $B$, $C$ и $D$, а ученик $A$ не играет.

При упрощении логических выражений можно выполнять такую последовательность действий :

  1. Заменить все “небазовые” операции (эквивалентность, импликацию, исключающее ИЛИ и др.) на их выражения через базовые операции инверсию, конъюнкцию и дизъюнкцию.
  2. Раскрыть инверсии сложных выражений по правилам де Моргана таким образом, чтобы операции отрицания остались только у отдельных переменных.
  3. Затем упростить выражение, используя раскрытие скобок, вынесение общих множителей за скобки и другие законы алгебры логики.

Пример 2

Здесь последовательно использованы правило де Моргана, распределительный закон, закон исключенного третьего, переместительный закон, закон повторения, вновь переместительный закон и закон поглощения.

Некоторые алгебраические примеры одним видом способны наводить ужас на школьников. Длинные выражения не только пугают, но и очень затрудняют вычисления. Пытаясь сходу понять, что и за чем следует, недолго запутаться. Именно по этой причине математики всегда стараются максимально упростить «жуткое» задание и только потом приступают к его решению. Как ни странно, такой трюк значительно ускоряет процесс работы.

Упрощение является одним из фундаментальных моментов в алгебре. Если в простых задачах без него ещё можно обойтись, то более трудные для вычисления примеры могут оказаться «не по зубам». Тут-то и пригодятся эти навыки! Тем более что сложных математических знаний не требуется: достаточно будет всего лишь запомнить и научиться применять на практике несколько базовых приёмов и формул.

Вне зависимости от сложности вычислений при решении любого выражения важно соблюдать порядок выполнения операций с числами :

  1. скобки;
  2. возведение в степень;
  3. умножение;
  4. деление;
  5. сложение;
  6. вычитание.

Последние два пункта можно спокойно поменять местами и это никак не отразится на результате. Но складывать два соседних числа, когда рядом с одним из них стоит знак умножения категорически нельзя! Ответ если и получится, то неверный. Поэтому нужно запомнить последовательность.

Применение подобных

К таким элементам относятся числа с переменной одного порядка или одинаковой степени. Существуют и так называемые свободные члены, не имеющие рядом с собой буквенного обозначения неизвестного.

Суть заключается в том, что при отсутствии скобок можно упростить выражение, складывая или вычитая между собой подобные .

Несколько наглядных примеров :

  • 8x 2 и 3x 2 - оба числа имеют одну и ту же переменную второго порядка, поэтому они подобны и при сложении упрощаются до (8+3)x 2 =11x 2 , тогда как при вычитании получается (8-3)x 2 =5x 2 ;
  • 4x 3 и 6x - а тут «х» имеет разную степень;
  • 2y 7 и 33x 7 - содержат различные переменные, поэтому, как и в предыдущем случае, не относятся к подобным.

Разложение числа на множители

Эта маленькая математическая хитрость, если научиться её правильно использовать, в будущем не раз поможет справиться с каверзной задачкой. Да и понять, как работает «система», несложно: разложением называют произведение нескольких элементов, вычисление которого даёт исходное значение . Таким образом, 20 можно представить как на 20×1, 2×10, 5×4, 2×5×2 или другим способом.

На заметку : множители всегда совпадают с делителями. Так что искать рабочую «пару» для разложения нужно среди чисел, на которые исходное делится без остатка.

Проделывать такую операцию можно как со свободными членами, так и с цифрами при переменной. Главное, не потерять последнюю во время вычислений - даже после разложения неизвестная не может взять и «уйти в никуда». Она остаётся при одном из множителей :

  • 15x=3(5x);
  • 60у 2 =(15y 2)4.

Простые числа, которые можно разделить лишь на себя или 1, никогда не раскладываются - в этом нет смысла .

Основные способы упрощения

Первое, за что цепляется взгляд:

  • наличие скобок;
  • дроби;
  • корни.

Алгебраические примеры в школьной программе часто составляются с учётом того, что их можно красиво упростить.

Вычисления в скобках

Внимательно следите за знаком, стоящим перед скобками! Умножение или деление применяется к каждому элементу внутри, а минус - меняет имеющиеся знаки «+» или «-» на противоположные.

Скобки вычисляются по правилам либо по формулам сокращённого умножения, после чего приводятся подобные.

Сокращение дробей

Сокращать дроби тоже несложно. Они сами через раз «охотно убегают», стоит произвести операции с приведением подобных членов. Но упростить пример можно ещё до этого: обращайте внимание на числитель и знаменатель . Они нередко содержат явные или скрытые элементы, которые можно взаимно сократить. Правда, если в первом случае нужно всего лишь вычеркнуть лишнее, во втором придётся подумать, приводя часть выражения к виду для упрощения. Используемые методы:

  • поиск и вынесение за скобки наибольшего общего делителя у числителя и знаменателя;
  • деление каждого верхнего элемента на знаменатель.

Когда выражение или его часть находится под корнем , первостепенная задача упрощения практически аналогична случаю с дробями. Необходимо искать способы полностью от него избавиться или, если это невозможно, максимально сократить мешающий вычислениям знак . Например, до ненавязчивого √(3) или √(7).

Верный способ упростить подкоренное выражение - попытаться разложить его на множители , часть из которых выносится за пределы знака. Наглядный пример: √(90)=√(9×10) =√(9)×√(10)=3√(10).

Другие маленькие хитрости и нюансы:

  • эту операцию упрощения можно проводить с дробями, вынося её за знак как целиком, так и отдельно числитель или знаменатель;
  • раскладывать и выносить за пределы корня часть суммы или разности нельзя ;
  • при работе с переменными обязательно учитывайте её степень, она должна быть равной или кратной корню для возможности вынесения: √(x 2 y)=x√(y), √(x 3)=√(x 2 ×x)=x√(x);
  • иногда допускается избавление от подкоренной переменной путём возведения её в дробную степень: √(y 3)=y 3/2 .

Упрощение степенного выражения

Если в случае простых вычислений на минус или плюс примеры упрощаются за счёт приведения подобных, то как быть при умножении или делении переменных с разными степенями? Их можно легко упростить, запомнив два основных момента:

  1. Если между переменными стоит знак умножения - степени складываются.
  2. Когда они делятся друг на друга - из степени числителя вычитается она же знаменателя.

Единственное условие для такого упрощения - одинаковое основание у обоих членов. Примеры для наглядности:

  • 5x 2 ×4x 7 +(y 13 /y 11)=(5×4)x 2+7 +y 13- 11 =20x 9 +y 2 ;
  • 2z 3 +z×z 2 -(3×z 8 /z 5)=2z 3 +z 1+2 -(3×z 8-5)=2z 3 +z 3 -3z 3 =3z 3 -3z 3 =0.

Отмечаем, что операции с числовыми значениями, стоящими перед переменными, происходят по обычным математическим правилам . И если присмотреться, то становится понятно, что степенные элементы выражения «работают» аналогично:

  • возведение члена в степень обозначает умножение его на самого себя определённое количество раз, т. е. x 2 =x×x;
  • деление аналогично: если разложить степень числителя и знаменателя, то часть переменных сократится, тогда как оставшиеся «собираются», что равносильно вычитанию.

Как и в любом деле, при упрощении алгебраических выражений необходимо не только знание основ, но и практика. Уже через несколько занятий примеры, когда-то кажущиеся сложными, будут сокращаться без особого труда, превращаясь в короткие и легко решаемые.

Видео

Это видео поможет вам разобраться и запомнить, как упрощаются выражения.

Не получили ответ на свой вопрос? Предложите авторам тему.

В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

Тема: Функция . Свойства квадратного корня

Урок: Преобразование и упрощение более сложных выражений с корнями

1. Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

3. ;

4. .

2. Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения число 120 необходимо разложить на простые множители:

Квадрат суммы раскроем по соответствующей формуле:

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

Ответ. при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

После сокращения дроби применяем формулу разности квадратов.

3. Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

б) выполним аналогичные действия:

4. Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Доказано.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго - 1.

Подставим это выражение под корень.

Раздел 5 ВЫРАЖЕНИЯ И УРАВНЕНИЯ

В разделе узнаете:

ü о выражения и их упрощения;

ü какие свойства равенств;

ü как решать уравнения на основе свойств равенств;

ü какие виды задач решаются с помощью уравнений; что такое перпендикулярные прямые и как их строить;

ü какие прямые называются параллельными и как их строить;

ü что такое координатная плоскость;

ü как определить координаты точки на плоскости;

ü что такое график зависимости между величинами и как его построить;

ü как применить изученный материал на практике

§ 30. ВЫРАЖЕНИЯ И ИХ УПРОЩЕНИЕ

Вы уже знаете, что такое буквенные выражения и умеете их упрощать с помощью законов сложения и умножения. Например, 2а ∙ (-4 b ) = -8 ab . В полученном выражении число -8 называют коэффициентом выражения.

Имеет ли выражение cd коэффициент? Так. Он равен 1, поскольку cd - 1 ∙ cd .

Вспомним, что преобразование выражения со скобками в выражение без скобок, называют раскрытием, скобок. Например: 5(2х + 4) = 10х+ 20.

Обратная действие в этом примере - это вынесение общего множителя за скобки.

Слагаемые, содержащие одинаковые буквенные множители, называют подобными слагаемыми. С помощью вынесения общего множителя за скобки возводят подобные слагаемые:

5х + y + 4 - 2х + 6 y - 9 =

= (5х - 2х) + (y + 6 y )+ (4 - 9) = = (5-2)* + (1 + 6)* y -5 =

B х+ 7у - 5.

Правила раскрытия скобок

1. Если перед скобками стоит знак«+», то при раскрытии скобок знаки слагаемых в скобках сохраняют;

2. Если перед скобками стоит знак «-», то при раскрытии скобок знаки слагаемых в скобках меняются на противоположные.

Задача 1 . Упростите выражение:

1) 4х+(-7х + 5);

2) 15 y -(-8 + 7 y ).

Решения. 1. Перед скобками стоит знак «+», поэтому при раскрытии скобок знаки всех слагаемых сохраняются:

4х +(-7х + 5) = 4х - 7х + 5=-3х + 5.

2. Перед скобками стоит знак«-», поэтому во время раскрытия скобок: знаки всех слагаемых меняются на противоположные:

15 - (- 8 + 7у) = 15у + 8 - 7у = 8у +8.

Для раскрытия скобок используют распределительную свойство умножения: а(b + c ) = ab + ас. Если а > 0, то знаки слагаемых b и с не изменяют. Если а < 0, то знаки слагаемых b и с меняют на противоположные.

Задача 2. Упростите выражение:

1) 2(6 y -8) + 7 y ;

2)-5(2-5х) + 12.

Решения. 1. Множитель 2 перед скобками е положительным, поэтому при раскрытии скобок знаки всех слагаемых сохраняем: 2(6 y - 8) + 7 y = 12 y - 16 + 7 y =19 y -16.

2. Множитель -5 перед скобками е отрицательным, поэтому при раскрытии скобок знаки всех слагаемых меняем на противоположные:

5(2 - 5х) + 12 = -10 + 25х +12 = 2 + 25х.

Узнайте больше

1. Слово «сумма» происходит от латинского summa , что означает «итог», «общее количество».

2. Слово «плюс» происходит от латинского plus , что означает «больше», а слово «минус» - от латинского minus , что значит «меньше». Знаки «+» и«-» используют для обозначения действий сложения и вычитания. Эти знаки ввел чешский ученый Й. Видман в 1489 г. в книге «Быстрый и приятный счет для всех торговцев» (рис. 138).

Рис. 138

ВСПОМНИТЕ ГЛАВНОЕ

1. Какие слагаемые называют подобными? Как возводят подобные слагаемые?

2. Как раскрывают скобки, перед которыми стоит знак «+»?

3. Как раскрывают скобки, перед которыми стоит знак «-»?

4. Как раскрывают скобки, перед которыми стоит положительный множитель?

5. Как раскрывают скобки, перед которыми стоит отрицательный множитель?

1374". Назовите коэффициент выражения:

1)12 а; 3)-5,6 ху;

2)4 6; 4)-с.

1375". Назовите слагаемые, которые отличаются только коэффициентом:

1) 10а + 76-26 + а; 3) 5 n + 5 m -4 n + 4;

2) bc -4 d - bc + 4 d ; 4)5х + 4у-х + у.

Как называются такие слагаемые?

1376". Есть ли подобными слагаемые в выражении:

1)11а+10а; 3)6 n + 15 n ; 5) 25р - 10р + 15р;

2) 14с-12; 4)12 m + m ; 6)8 k +10 k - n ?

1377". Надо ли менять знаки слагаемых в скобках, раскрывая скобки в выражении:

1)4 + (а+ 3 b ); 2)-c +(5-d ); 3) 16-(5 m -8 n )?

1378°. Упростите выражение и подчеркните коэффициент:

1379°. Упростите выражение и подчеркните коэффициент:

1380°. Сведите подобные слагаемые:

1) 4а - По + 6а - 2а; 4) 10 - 4 d - 12 + 4 d ;

2) 4 b - 5 b + 4 + 5 b ; 5) 5а - 12 b - 7а + 5 b ;

3)-7 ang="EN-US">c+ 5-3 c + 2; 6) 14 n - 12 m -4 n -3 m .

1381°. Сведите подобные слагаемые:

1) 6а - 5а + 8а -7а; 3) 5с + 4-2с-3с;

2)9 b +12-8-46; 4)-7 n + 8 m - 13 n - 3 m .

1382°. Вынесите общий множитель за скобки:

1)1,2 а +1,2 b ; 3) -3 n - 1,8 m ; 5)-5 p + 2,5 k -0,5 t ;

2) 0,5 с + 5 d ; 4) 1,2 n - 1,8 m ; 6)-8р - 10 k - 6 t .

1383°. Вынесите общий множитель за скобки:

1) 6а-12 b ; 3)-1,8 n -3,6 m ;

2) -0,2 с + 1 4 d ; А) 3р - 0,9 k + 2,7 t .

1384°. Раскройте скобки и сведите подобные слагаемые;

1) 5 + (4а -4); 4) -(5 c - d ) + (4 d + 5с);

2) 17х-(4х-5); 5) (n - m )- (-2 m - 3 n );

3) (76 - 4) - (46 + 2); 6) 7(-5х + у) - (-2у + 4х) + (х - 3у).

1385°. Раскройте скобки и сведите подобные слагаемые:

1) 10а + (4 - 4а); 3) (с - 5 d ) - (- d + 5с);

2) -(46- 10) + (4- 56); 4)-(5 n + m ) + (-4 n + 8 m )-(2 m -5 n ).

1386°. Раскройте скобки и найдите значение выражения:

1)15+(-12+ 4,5); 3) (14,2-5)-(12,2-5);

2) 23-(5,3-4,7); 4) (-2,8 + 13)-(-5,6 + 2,8) + (2,8-13).

1387°. Раскройте скобки и найдите значение выражения:

1) (14- 15,8)- (5,8 + 4);

2)-(18+22,2)+ (-12+ 22,2)-(5- 12).

1388°. Раскройте скобки:

1)0,5 ∙ (а + 4); 4) (n - m ) ∙ (-2,4 p );

2)-с ∙ (2,7-1,2 d ); 5)3 ∙ (-1,5 р + к - 0,2 t );

3) 1,6 ∙ (2 n + m ); 6) (4,2 p - 3,5 k -6 t ) ∙ (-2а).

1389°. Раскройте скобки:

1) 2,2 ∙ (х-4); 3)(4 c - d )∙(-0,5 y );

2) -2 ∙ (1,2 n - m ); 4)6- (-р + 0,3 k - 1,2 t ).

1390. Упростите выражение:

1391. Упростите выражение:

1392. Сведите подобные слагаемые:

1393. Сведите подобные слагаемые:

1394. Упростите выражение:

1)2,8 - (0,5 а + 4) - 2,5 ∙ (2а - 6);

2) -12 ∙ (8 - 2, by ) + 4,5 ∙ (-6 y - 3,2);

4) (-12,8 m + 24,8 n ) ∙ (-0,5)-(3,5 m -4,05 m ) ∙ 2.

1395. Упростите выражение:

1396. Найдите значение выражения;

1) 4-(0,2 а-3)-(5,8 а-16), если а = -5;

2) 2-(7-56)+ 156-3∙(26+ 5), если = -0,8;

m = 0,25, n = 5,7.

1397. Найдите значение выражения:

1) -4∙ (я-2) + 2∙(6x - 1), если х =-0,25;

1398*. Найдите ошибку в решении:

1)5- (а-2,4)-7 ∙ (-а+ 1,2) = 5а - 12-7а + 8,4 = -2а-3,6;

2) -4 ∙ (2,3 а - 6) + 4,2 ∙ (-6 - 3,5 а) = -9,2 а + 46 + 4,26 - 14,7 а = -5,5 а + 8,26.

1399*. Раскройте скобки и упростите выражение:

1) 2аb - 3(6(4а - 1) - 6(6 - 10а)) + 76;

1400*. Расставьте скобки так, чтобы получить правильное равенство:

1)а-6-а + 6 = 2а; 2) a -2 b -2 a + b = 3 a -3 b .

1401*. Докажите, что для любых чисел а и b , если а > b , то выполняется равенство:

1) (а + b ) + (а- b ) = 2а; 2) (а + b ) - (a - b ) = 2 b .

Будет ли правильным данное равенство, если: а) а < b ; б) а = 6?

1402*. Докажите, что для любого натурального числа а среднее арифметическое предыдущего и следующего за ним чисел равна числу а.

ПРИМЕНИТЕ НА ПРАКТИКЕ

1403. Для приготовления фруктового десерта для трех человек нужно: 2 яблока, 1 апельсин, 2 банана и 1 киви. Как составить буквенный выражение для определения количества фруктов, необходимых для приготовления десерта я для гостей? Помогите Марин эти подсчитать, сколько фруктов нужно купить, если к ней в гости придут: 1) 5 друзей; 2) 8 друзей.

1404. Составьте буквенный выражение для определения времени, необходимого для выполнения домашнего задания по математике, если:

1) на решения задач потрачено а мин; 2) упрощение выражений в 2 раза больше, чем на решение задач. Сколько времени выполнял домашнее задание Василько, если на решение задач он потратил 15 мин?

1405. Обед в школьной ‘столовой состоит из салата, борща, голубцов и компота. Стоимость салата составляет 20 %, борща - 30 %, голубцов - 45 %, компота - 5 % общей стоимости всего обеда. Составьте выражение для нахождения стоимости обеда в школьной столовой. Сколько стоит обед, если цена салата - 2 грн?

ЗАДАЧИ НА ПОВТОРЕНИЕ

1406. Решите уравнение:

1407. На мороженое Таня потратила всех имеющихся денег, а на конфеты - остальных. Сколько денег осталось у Тани,

если конфеты стоят 12 грн?

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.

8) -3,5 · · (-1) = 7у.

9) 3а · (-3) · 2с = -18ас.

Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.

Примеры. Упростите, используя сокращение дробей.

Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b ; дробь 11) сократим на а и дробь 12) сократим на 7n . Получаем:

Алгебраические выражения применяют для составления формул.

Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.

Страница 1 из 1 1



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама