THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Вполне логично, что любую пару, ожидающую или планирующую продолжение рода, интересует, от чего зависит пол ребенка. К сожалению, вопрос половой принадлежности малыша окружен нелогичными мифами, противоречащими здравому смыслу и законам биологии и физиологии.

В нашей статье мы развеем эти мифы и разберемся, от чего зависит пол ребенка у человека, а также рассмотрим, от кого именно зависит – от мужчины или от женщины. Отдельно коснемся вопроса, от чего зависит пол ребенка при зачатии ребенка, и как можно повлиять на этот процесс.

Вконтакте

В каждой соматической клетке человека содержится 23 пары хромосом, которые несут в себе генетическую информацию – такой набор хромосом называется диплоидным (46 хромосом). 22 пары называются аутосомами и не зависят от пола человека, следовательно, они одинаковы у мужчин и у женщин.

Хромосомы 23-й пары называются половыми, так как именно они определяют половую принадлежность. Эти хромосомы могут отличаться по форме, и их принято обозначать буквами X или Y. Если у человека в 23-й паре наблюдается сочетание Х- и Y-хромосомы, это особь мужского пола, если это две одинаковые Х-хромосомы – женского. Следовательно, клетки женского организма имеют набор 46ХХ (46 хромосом; одинаковые половые Х-хромосомы), а мужского – 46XY (46 хромосом; разные половые Х- и Y-хромосомы).

Половые клетки человека, сперматозоиды и яйцеклетки, содержат 23 хромосомы вместо 46-ти – такой набор называется гаплоидным. Такой набор хромосом необходим для образования уже диплоидной зиготы – клетки, образуемой при слиянии сперматозоида и яйцеклетки, которая является первой стадией развития эмбриона. Но всё же пол ребенка зависит от мужчины. Почему? Сейчас разберемся.

Хромосомный набор мужчины и женщины

От кого зависит больше – от женщины или мужчины?

Многие все еще задаются вопросом «От кого зависит пол ребенка: от женщины или мужчины?» Ответ очевиден, если разобраться с тем, какие половые хромосомы несут половые клетки.

Яйцеклетка всегда имеет половую Х-хромосому, сперматозоид же может содержать как Х-, так и Y-хромосому. Если яйцеклетку оплодотворяет сперматозоид с Х-хромосомой, пол малыша будет женским (23Х+23Х=46ХХ). В случае, когда с яйцеклеткой сливается сперматозоид с Y-хромосомой, пол ребенка будет мужским (23Х+23Y=46XY). Так от кого зависит пол ребенка?

То, какого пола будет ребенок, зависит сугубо от сперматозоида, который оплодотворит яйцеклетку. Получается, пол ребенка зависит от мужчины.

От чего зависит пол ребенка при зачатии? Это рандомный процесс, когда вероятность оплодотворения яйцеклетки тем или иным сперматозоидом примерно одинакова. То, что малыш будет мальчиком или девочкой – случайное стечение обстоятельств.

Женщинам с феминистичными склонностями придется или принять тот факт, что пол ребенка зависит от мужчины, или женщины будут долго и нудно пытаться повлиять на себя, модифицируя свой рацион, частоту половых актов и время сна, никаким образом при этом не повышая вероятность рождения мальчика или девочки.

Отчего именно сперматозоид с Y-хромосомой оплодотворяет яйцеклетку?

Во время овуляторной фазы менструального цикла яйцеклетка выходит в маточную трубу. Если в это время женщина имеет половой контакт с мужчиной, сперматозоиды в составе спермы поступают во влагалище, цервикальный канал, а затем – в матку и маточные трубы.

На пути к яйцеклетке у сперматозоидов есть множество преград:

  • кислая среда влагалища;
  • густая слизь в цервикальном канале;
  • обратный ток жидкости в маточных трубах;
  • иммунная система женщины;
  • лучистый венец и блестящая оболочка яйцеклетки.

Оплодотворить яйцеклетку может только один сперматозоид, и этим сперматозоидом может быть как носитель Х-хромосомы, так и Y-хромосомы. То, в какой позе происходит половой акт, какой диеты придерживался мужчина и т.д. не влияет на то, какой из сперматозоидов будет «победителем».

Есть мнение, что Х-сперматозоиды более устойчивы к «агрессивной» среде в женских половых органах, но при этом они медленнее Y-сперматозоидов, однако достоверных доказательств этому нет.

Почему народные способы и приметы не стоит воспринимать серьезно?

А потому, что если включить логику и здравый смысл, они не имеют никакого обоснования. Какие это методы?

  1. Древние календарные методы, например:
    • китайский метод планирования пола в зависимости от возраста женщины и месяца зачатия;
    • японский метод, где пол малыша зависит уже от месяца рождения матери и отца;
  2. Методы, связанные с половым актом: воздержание (для появления девочки) и безудержность (для появления мальчика), разнообразные позы как предиктор мужского или женского пола малыша;
  3. Диетические методы:
    • для получения ребенка-девочки – продукты с кальцием (яйца, молоко, орехи, свекла, мед, яблоки…);
    • для получения ребенка-мальчика – продукты с калием (грибы, картофель, апельсины, бананы, горох…).

А теперь разложим всё по полочкам.

Китайские и японские методы предполагают использование специальных таблиц для прогнозирования пола малыша. От кого зависит пол ребенка при зачатии? От сперматозоида, который оплодотворит яйцеклетку. Китайцы же упорно считали, что пол малыша зависит именно от матери, следовательно, этот метод уже лишается какой-либо логической подоплеки.

Зависит ли пол плода от женщины? В яйцеклетке в любом случае есть только Х-хромосома, следовательно, ответственности за то, родится девочка или мальчик, она не несет.

Ориентироваться на японский метод можно, если свято верить, что совместимость пар определяет исключительно гороскопом, потому что суть этого варианта определения пола такая же. Помним, от чего зависит пол будущего ребенка при зачатии, изучая этот метод!

Разве могут даты рождения двух партнеров повлиять на то, что через много лет из спермы мужчины самым ловким и сильным окажется именно Х- или Y-сперматозоид? Особенно учитывая рандомность последнего. Сюда же можно отнести всевозможные методы, обещающие рождение ребенка того или иного пола в зависимости от дня менструального цикла.

Еще один способ определения пола будущего ребенка

Темпы половой жизни, равно как и диета, могут повлиять на качество спермы и на вероятность оплодотворения, но никак не на пол потенциального малыша. Модификации половой жизни не входят в число тех факторов, от чего зависит пол будущего ребенка, так как не может ускорить передвижение или увеличить выносливость «того самого» сперматозоида.

Да и Х-, и Y-сперматозоиды отличаются не количеством кальция и калия, а всего лишь фрагментом хромосомы, содержащей ДНК. А про влияние женщины вообще не стоит говорить – мы все помним, от кого из родителей зависит пол ребенка.

Следовательно, народные методы планирования пола малыша основаны на мифах и незнании особенностей процесса оплодотворения, потому серьезно к ним относиться нельзя. А вот о том, какими способами можно воспользоваться для определения беременности в домашних условиях, найдете .

Влияет ли пол плода на появление токсикоза?

То, что раньше называли токсикозом, сейчас называют гестозом. Гестоз – результат патологической адаптации женского организма к беременности. К причинам гестозов относят нарушение гормонального регулирования беременности, иммунологические изменения, наследственную предрасположенность, особенности прикрепления плаценты и множество других факторов.

Проявляются гестозы в виде гемодинамических нарушений (например, увеличение артериального давления), ухудшении функции мочевыделительной системы (нефропатия беременности, проявляющаяся в виде отеков, появления белка в моче и т.д.), в тяжелых случаях наблюдается патология свертываемости крови.

На популярный вопрос «Зависит ли токсикоз от пола будущего ребенка?» ответ один: однозначно нет. Ни на один из факторов, являющихся причиной гестоза, половая принадлежность плода повлиять не может.

Все первые признаки беременности подробно описаны в . А — расписано, на каком сроке и с помощью УЗИ можно достоверно узнать пол будущего ребенка.

Полезное видео

Известно, что пол будущего ребенка определяется в момент зачатия и зависит от того, какой сперматозоид оплодотворит яйцеклетку. Является ли это соединение случайным, или можно на него каким-то образом воздействовать:

Заключение

  1. Сперматозоиды продуцируются половыми железами мужчины, что предполагает то, от кого зависит пол будущего ребенка.
  2. Факт того, что яйцеклетку может оплодотворить сперматозоид как с Х-, так и с Y-хромосомой, отвечает на вопрос, почему половая принадлежность ребенка зависит от отца, а не от матери.

Мысль достаточно тривиальная: чем больше мы узнаем о предмете, тем больше проблем возникает и тем шире становится круг нашего незнания.

Когда мы не знали, что такое наследственность, круг нашего незнания об этом предмете был очень узок, и самой важной проблемой казалось-правы ли анималькулисты, которые считали, что в каждом сперматозоиде содержится маленький человечек, или овисты, которые помещали этого человечка в яйцеклетку. Круг нашего незнания значительно расширился, когда мы узнали, что наследственный материал находится в хромосомах. Еще шире он стал, когда оказалось, что хромосомы разные. Выделили группу аутосом — хромосом, которые присутствуют в клетках мужчин и женщин, и пару половых хромосом. У женщин эта пара представлена двумя хромосомами X , а у мужчин одна X, а другая Y.

Буквой X в математике обозначается неизвестная величина. Что же, X — самая неизвестная хромосома ? Это как на нее посмотреть. Из всех хромосом человека и других животных она — самая изученная. И поэтому круг нашего незнания о ней наиболее широк. Вернее, их несколько, этих кругов.

Круг 1: Определение пола

В школьном учебнике написано, что все клетки тела женщины имеют две Х-хромосомы, а мужчины — одну X и одну Y. При образовании половых клеток парные хромосомы расходятся в разные клетки так, что каждая яйцеклетка получает по одной X-хромосоме. Среди сперматозоидов половина несет Х-хромосому, половина — Y. В результате при оплодотворении получается половина девочек, XX, и половина мальчиков, XY. А кем будет новорожденный с хромосомам и XXY ? Мальчиком. А с одной X без Y? Девочкой. Отсюда следует, что ключевую роль в определении пола играет Y-хромосома. Именно на Y-хромосоме находится ген-регулятор SRY. Он запускает дифференцировку XY эмбрионов по мужскому типу.

Ранние стадии эмбрионального развития XX- и XY-зародышей абсолютно идентичны. У тех и других в свое время образуются зачатки и мужского, и женского репродуктивного тракта, а зачатки половых желез -гонад и вовсе одинаковы. На определенном этапе эмбриогенеза у XY-зародышей недифференцированный зачаток гонад начинает развиваться по мужскому типу. После этого мужские гонады выделяют два гормона: один стимулирует развитие мужского полового тракта, другой — инволюцию женского. Иными словами, чтобы получить мальчика, надо кое-что сделать. Если не делать ничего — получится девочка.

Ген (или гены), которые делают это кое-что-запускают дифференцировку гонад по мужскому типу со всеми вытекающими последствиями, — находятся в Y-хромосоме. В редких случаях этот ген перемещается с Y на X, и тогда мы получаем XX особей мужского пола и соответственно XY особей женского пола.

Этот ген SRY (Sex reversal Y) сейчас выделен и расшифрован. Его роль в детерминации мужского пола была показана в прямом опыте. ДНК этого гена ввели в оплодотворенную ХХ-яйцеклетку мыши и получили ХХ-самца.

Итак, мы теперь имеем в руках ген мужского пола и знаем, что он работает. Мы также знаем, где, когда и как долго он работает. Где? В зачатке еще не дифференцированных по полу половых желез. Когда? Когда зачаток уже есть, но еще не дифференцирован. Как долго? У мыши день-полтора. Когда дифференцировка гонады завершается, он уже не нужен. Что он делает? Синтезирует белок, который связывается с другим геном, находящимся в девятой хромосоме человека, и активирует его к производству белка, который в свою очередь или непосредственно запускает дифференцировку гонад по мужскому типу, или опять же связывается с третьим геном, который неизвестно где находится и что делает.

Круг 2. Компенсация дозы

Интересно заметить: Х-хромосома млекопитающих содержит 5% от общего числа генов, a Y — такую малость, что и говорить не о чем. Но тогда получается, что у всякой женщины на 5% больше генов, чем у любого сколь угодно красивого и умного мужчины.

Есть несколько способов преодоления этого дисбаланса, или компенсации избыточной дозы генов у самок. У самцов насекомых единственная X-хромосома работает вдвое активнее, на уровне двух Х-хромосом насекомых-самок. У гермафродитов нематод, выполняющих самочьи функции, каждая из двух Х-хромосом работает вполсилы по сравнению с единственной Х-хромосомой самцов.

Млекопитающие выбрали третий путь. В каждой клетке организма самки работает только одна Х-хромосома, а вторая молчит: она практически полностью инактивирована и очень плотно упакована.

Инактивация происходит довольно рано в ходе эмбрионального развития. На самых ранних стадиях работают обе Х-хромосомы. Затем часть клеток специализируется на выполнении питающей функции. (Позднее эти клетки войдут в состав плаценты.) И в этих клетках необратимо «выходит из игры» — инактивируется одна из Х-хромосом, и именно та, что была получена от отца. Остальные клетки некоторое время остаются неспециализированными и при этом пользуются услугами обеих Х-хромосом. Они называются клетками внутренней массы эмбриона, и далее, в результате процесса дифференцировки, из них формируется собственно эмбрион. Этот процесс как раз и сопровождается выключением одной из Х-хромосом. Однако выбор хромосомы, подлежащей инактивации, происходит случайно: в одной клетке инактивируется отцовская Х-хромосома , в другой — материнская. (Так этот процесс идет у всех млекопитающих, включая человека и исключая сумчатых. У сумчатых во всех клетках инактивируется Х-хромосома, полученная от отца. Не спрашивайте меня почему. Так получилось.) При этом единожды сделанный выбор не пересматривается. Если в некой клетке-прародительнице отключилась материнская Х-хромосома, то во всех дочерних, внучатых и т. д. клетках она же останется выключенной.

Рассмотрим этот процесс на кошках. Ген рыжей окраски находится у них вХ-хромосоме. Если мы скрестим рыжую кошку с черным котом, то все их сыновья будут рыжими (X от матери, У от отца), а дочери — черепаховыми. В момент дифференцировки пигментных клеток у самок-эмбрионов в одних клетках инактивируется отцовская Х-хромсосома с черным геном, а в других материнская с рыжим геном. И те и другие производят клоны клеток, в которых сохраняется и воспроизводится неактивное состояние соответствующих Х-хромосом. Поскольку дочерние клетки обычно располагаются рядом, то мы и видим на шкурке у черепаховых кошек рыжие и черные пятна. В первых инактивирована X-хромосома с черным геном, во вторых-с рыжим.

Я уже сказал, что инактивированное состояние сохраняется стабильно в ряду клеточных поколений во всех клетках тела. Половые клетки — исключение из этого правила. В их предшественниках инактивация происходит, но при образовании самих половых клеток молчавшая несколько клеточных поколений Х-хромосома реактивируется. Это у самок. У самцов, наоборот, инактивируется единственная Х-хромосома . Но об этом мы поговорим подробнее в третьем круге, а пока вернемся к нашим самкам.

Наши предки имели недифференцированные половые хромосомы (1). Затем на одной из них возник ген-регулятор мужского пола — SRY (2). Для того, чтобы предотвратить перенос этого гена с Y-хромосомы на X, возник запрет на спаривание между большими частями этих хромосом (3). Часть Y-хромосомы, исключенная из спаривания, постепенно деградировала (4).

До сих пор мы находились в пределе круга знаний школьного учебника. А сейчас вступаем на круги незнания.
Оказывается, клетки умеют считать свои Х-хромосомы. Посчитав, они поступают по правилу: только одна Х-хро-мосома должна быть активна в диплоидной клетке (имеющей нормальный двойной набор аутосом). Все, что сверх этого, -должно быть инактивировано. То есть если клетка диплоидная, но имеет четыре Х-хромосомы, то три из них молчат. Если же клетка тетраплоидная (четверной набор аутосом) и те же четыре Х-хромосомы, то две молчат, две работают. Как клетки производят эту калькуляцию — никто не знает, хотя это очень любопытно. Ни одна из аутосом на такое не способна. Может быть, клетка учитывает объем ядра, который пропорционален плоидности?

Следующий вопрос: что-то (так и хочется сказать: кто-то) заставляет одну из Х-хромосом инактивироваться или она это делает сама и добровольно? Пока неясно. Мы можем подозревать, что сигнал приходит извне от загадочного счетного устройства. Далее опять пробел в наших знаниях, заполненный самыми правдоподобными фантазиями, которые ограничены (наконец-то!) некоторыми фактами. На Х-хромосоме существует ген, который активно работает на инактивированной Х-хромосоме. Продуктами данного гена являются очень большие молекулы специфической РНК, названой XIST — X-inactive specific transcript. Эти молекулы не используются в качестве матриц для синтеза белков, а работают сами по себе. Они, несомненно, принимают участие в установлении неактивного состояния, так как Х-хромосома, у которой отсутствует район гена XIST, никогда не инактивируется. Если же ген XIST искусственно перенести на аутосому, то она инактивируется. Ген XIST был выделен и проанализирован. Его активные участки оказались очень сходными у человека, мыши и других млекопитающих.

XIST действует только на ту хромосому, которая его произвела, а не инактивирует все подряд. Создается впечатление, что молекулы XIST действуют строго локально, как бы расползаясь вдоль по хромосоме от места синтеза. Молекулы XIST окутывают Х-хромосому, словно кокон и очень хочется написать — тем самым выключают ее из активной работы. Но увы. Строгих доказательств тому нет, а даже наоборот. Существуют данные, что удаление района гена XIST из уже инактивированной Х-хромосомы не приводит к восстановлению ее активного состояния. А как же тогда происходит поддержание неактивного состояния Х-хромосомы в ряду клеточных поколений, при чем тут XIST? Видимо, в момент установления инактивированного статуса, активный ген XIST жизненно необходим, а потом в нормальных инактивированных Х-хромосомах XIST синтезируется постоянно. Зачем? Кто его знает. Наверное, на всякий случай.

Я все время говорил, что одна из Х-хромосом у самок инактивируется. Но до сих пор умалчивал о том, что инактивация никогда не бывает полной. Ряд генов неактивной Х-хромосомы ускользает от инактивации. Понятно, почему (но непонятно как) избегает инактивации район спаривания с Y-хромосомой. Дело в том, что в данном районе находятся гены, присутствующие и на Х- и на Y-хромосомах: то есть и у XY-самцов таких генов по паре, и у XX-самок их столько же — этим генам не нужна компенсация дозы. Но откуда механизм Х-инактивации знает, что их трогать не надо, — остается загадкой.

И уж, казалось бы, совсем незачем инактивировать единственную Х-хромосому у самцов. Тем не менее это регулярно происходит. Но тут начинается уже третий круг незнания.

Круг З: Х-хромосома у самцов

Инактивация единственной Х-хромосомы у самцов происходит в предшественниках сперматозоидов. Они, клетки-предшественники, как и все клетки тела самцов, содержат двойной (диплоидный)набор аутосом и пару половых хромосом X и Y. В сперматозоидах же (как и в яйцеклетках) количество хромосом должно быть вдвое меньше — каждая хромосома в одном экземпляре. Тогда после оплодотворения двойной набор восстановится, и все начнется сначала. Как верно говорил В.И.Ленин, обращаясь не то к меньшевикам, не то к ликвидаторам, а может, и к отзовистам: «Прежде чем объединиться, необходимо размежеваться».

Процесс клеточного деления, при котором происходит редукция числа хромосом в половых клетках, называется мейозом. И в ходе этого процесса хромосомам, прежде чем размежеваться, приходится объединиться. На начальных стадиях мейоза каждая хромосома находит свою пару (не спрашивайте меня, как она это делает — это отдельная и преобширнейшая область незнания) и сливается с ней по всей длине. При этом хромосомы могут обмениваться участками. Когда спариваются две Х-хромосомы в мейозе у самок, проблем не возникает.

Хотя нет, проблема возникает, но заблаговременно устраняется. Проблема в том, что до вступления в мейоз одна из Х-хромосом находится в инактивированном и, следовательно, в плотно упакованном состоянии. Ее ДНК закрыта не только для транскрипции (синтеза РНК), но и для узнавания своей активной парой. Поэтому, а вернее, для этого она реактивируется непосредственно перед вступлением в мейоз (Понятно для чего, но непонятно как.)

У самцов в мейозе проблема прямо противоположного свойства. Х-хромосома одна и Y — одна, и они должны объединиться, чтобы потом размежеваться. А у них всего-то и общего друг с другом, что небольшой район спаривания. По сходству этих районов они друг друга и опознают, и в этом районе (простите за тавтологию) спариваются и обмениваются участками.

А что же те части, которые различны у Х- и Y-хромосом? Они остаются неспаренными. И, надо вам сказать, в половых клетках на этой стадии действует суровый закон — клетки, содержащие неспаренные хромосомы, на следующую стадию не пропускаются и подлежат уничтожению. Как тогда быть с неспаренными частями Х- и Y-хромосом? Правильно, надо их упаковать так, чтобы не нашли клеточные контролеры, то есть — инактивировать. Благо механизм такой инактивации уже есть и успешно используется в клетках тела самок — XIST. Так оной происходит, и XIST действительно принимает в этом участие. В мужском мейозе молекулы XIST плотно окутывают Х- и Y-хромосомы и делают их недоступными для контролеров неспаренности. Но можно ли сказать, что самцы используют механизм, открытый самками? Нет, нельзя.
Теперь мы должны войти в четвертый круг и поговорить о том, как много мы не знаем об эволюции половых хромосом.

Круг 4: Эволюция половых хромосом

Когда-то давным-давно во времена динозавров у наших очень далеких предков Х- и Y-хромосомы были одинаковыми. Отличия заключались в том, что Y несла ген мужского пола, а X — нет. Они до сих пор остались почти одинаковыми у однопроходных млекопитающих — ехидны и утконоса. У сумчатых и плацентарных млекопитающих Х- и Y-хромосомы далеко и безнадежно разошлись.

Как и почему это произошло, мы не знаем и не узнаем уже никогда. Можем только строить гипотезы. Вот этим-то мы с вами сейчас и займемся. Итак, на Y-хромосоме находились гены детерминации мужского пола. Для того чтобы соблюдалось стабильное соотношение полов 1:1 (почему нужно именно 1:1 — это отдельная история), они должны были находиться там постоянно, а не скакать с Y на X и обратно. Наиболее простой способ предотвратить эти переходы — не давать спариваться в мейозе той части npото-Y-хромосомы, где были гены мужского пола, с той частью прото-Х-хромосомы, где таких генов не было. Если они не спариваются, то не могут обмениваться участками. Но неспаренные участки следовало спрятать от контролеров спаренности. Здесь-то и мог возникнуть и зафиксироваться механизм временной упаковки половых хромосом. Уже потом, гораздо позже, этот
механизм пригодился для постоянной инактивации избыточной дозы Х-хро-мосомных генов у самок.

Но как только прекратился обмен генами между Х- и Y-хромосомами , Y-хромосома начала катастрофически деградировать, терять активные гены и становиться все более отличной от X. Почему прекращение обмена вызвало деградацию? Дело в том, что спаривание парных хромосом выполняет очень важную функцию сверки генного состава.

Вновь возникающие дефекты при этом быстро и эффективно устраняются (как это происходит — еще один, и очень широкий, круг незнания). Прекращение спаривания делает очистку от дефектов невозможной. Дефекты накапливаются, гены разрушаются, и хромосома деградирует. Это процесс был воспроизведен в прямом эксперименте. В одну из аутосом дрозофилы ввели генетический фактор, который блокировал ее спаривание в мейозе. За считанные поколения эта хромосома деградировала. Можно предположить, что Y-хромосома после частичного развода с X прошла именно этот путь. Гены, необходимые для детерминации мужского пола, поддерживались в рабочем состоянии естественным отбором, все прочие гены накапливали дефекты и постепенно деградировали. С Х-хромосомами этого не произошло. Встречаясь при очередной смене поколений в клетках женщины, они спаривались друг с другом, сверяли свой генный состав и тем самим поддерживали все гены в рабочем состоянии.

Но Х-хромосоме тоже пришлось платить за развод с Y-хромосомой. Утрата активных генов на Y и возникновение дисбаланса между дозой генов у самцов и самок привели к необходимости компенсации избыточной дозы генов Х-хромосомы у самок. Для решения этой проблемы, по-видимому, и был использован ранее открытый самцами механизм.

Это в свою очередь наложило жесткий запрет на любые переходы генов с аутосом на половые хромосомы и обратно. Действительно, многие — если не все — аутосомные гены привыкли работать в паре, поэтому отключение одного из членов пары в X-хромосоме имело бы роковые последствия для носителей такой генной комбинации. К неблагоприятным последствиям может привести и перенос генов с Х-хромосомы на аутосому: такие гены не будут инактивироваться и вместо предусмотренной одной копии генов в клетках самок будут работах обе копии.

В результате генный состав Х-хромосом у плацентарных млекопитающих законсервировался. Все они имеют практически одинаковые по набору генов Х-хромосомы, в то время как их аутосомы претерпели значительные изменения в ходе эволюции.

Эволюция половых хромосом, таким образом, была сопряжена с паллиативными решениями возникающих проблем и противоречий. Эти решения создавали новые проблемы, которые тоже решались паллиативно, и так до бесконечности. Нашему творческому уму такой процесс кажется абсолютно бессмысленным и нецелесообразным. Результаты, достигнутые в ходе этого процесса (механизмы определения пола, дозовой компенсации, характер поведения хромосом в мужском и женском мейозе), также представляются неоправданно усложненными и нецелесообразными. Если взяться с умом и четко сформулировать цель, все это можно было бы организовать гораздо проще, надежней и экономичней. Но в том-то все и дело, что эволюция ни в коем случае не есть целенаправленный процесс. Эволюции в самом существе своем — это постоянный поиск мелких решений сиюминутных задач. Чаще всего решения находятся не самые лучшие из возможных. Более того, они порождают новые проблемы, которые требуют решений. И эти решения опять же оказываются паллиативами — и так до бесконечности.
А нам остается восхитительная задача: распутывать эти нескончаемые клубки проблем, все более и более расширяя круги нашего незнания.

Всем привет, с вами Ольга Рышкова. Из школьного и ВУЗовского курса многие знают, что пол человека формируется в период зачатия и определяют его хромосомы. Вы помните, что у человека 23 пары хромосом? Каждая клеточка нашего тела содержит этот набор хромосом.

У мужчин и женщин все пары хромосом одинаковые, кроме одной пары. Это половые хромосомы. В этой паре у женщин одинаковые хромосомы, а у мужчин разные. Именно эта пара определяет наш пол. У женщин это две Х хромосомы (ХХ), а у мужчин ХУ хромосомы.

Посмотрите, это видно на рисунке – все пары хромосом у мужчин и женщин одинаковые, а половые хромосомы, обведённые кружочком, разные.

Все наши клетки имеют парные хромосомы (двойной набор), а вот в половых клетках (яйцеклетках у женщин и сперматозоидах у мужчин) - одиночный набор. То есть все яйцеклетки женщин имеют одну Х-хромосому. А у мужчин половина сперматозоидов имеет Х-хромосому, половина У-хромосому.

Пол ребёнка зависит от сперматозоида мужчины.

Так почему же рождаются мальчики или девочки? Пол будущего ребёнка зависит от того, какой сперматозоид проникнет в яйцеклетку – с Х-хромосомой или с У-хромосомой. Вы поняли, что пол ребёнка зависит от сперматозоида мужчины?

Если так, будет мальчик.

А если так, будет девочка.

Тут вмешиваются гормоны.

Оказалась, что пол будущего ребёнка формируется не только при определённом наборе хромосом. Только недавно учёные обнаружили, насколько важна роль тестостерона в том, кем будет ребёнок – мужчиной или женщиной. Всю жизнь мы находимся под влиянием гормонов. Но наиболее активно влияние этих химических веществ в то время, когда определяется наш пол, ещё до рождения.

Это вас может шокировать.

Почти никто не знает, что человеческий зародыш в первые 6 недель развивается как женщина. То есть все мы, включая 100%-ных мужчин, независимо от набора хромосом, сначала развивались как женщины. И только на седьмой неделе, когда начинается формирование половых желез, когда у эмбриона с набором хромосом ХУ начнут формироваться семенники, вырабатывающие тестостерон, только тогда начнётся формирование мужчины.

Пол определяется тестостероном.

Независимо от того, какой набор хромосом у плода – ХХ или ХУ, только наличие или отсутствие тестостерона сформирует его мальчиком или девочкой. Если гормон не вырабатывается, то в любом случае будет девочка.

Это нормально?

Это может быть нормой, а может быть патологией. На 7-8 неделе под влиянием У-хромосомы у эмбриона начинают формироваться семенники, они выделяют тестостерон, и под влиянием тестостерона развиваются наружные половые органы и изначально женские гениталии превращаются в мужские. Это норма.

Под влиянием Х-хромосомы на 7-8 неделе у плода начинают формироваться яичники, они не выделяют тестостерон и женские половые органы продолжают развиваться как женские. Это тоже норма.

А в чём же патология?

Учёные пришли к выводу, что тестостерон влияет на пол будущего ребёнка, когда стали изучать людей с мужским набором хромосом, которые так и не стали обычными мужчинами. Есть такая патология, она называется синдром невосприимчивости к андрогенам (СНА). Это генетическое отклонение. Оно наблюдается у 1 из 30 000 младенцев, когда эмбрион мужского пола не может использовать вырабатывающийся тестостерон и не воспринимает мужские половые гормоны.

Люди с синдромом невосприимчивости к андрогенам являются наглядной демонстрацией того, что пол ребёнка определяют не столько хромосомы, сколько гормоны. Несмотря на мужской набор хромосом плод с этим синдромом не может развиваться в мальчика, поскольку тестостерон не может выполнить свою задачу.

Мальчики рождаются девочками.

В такой ситуации эмбрион генетически мужского пола. У него есть семенники, которые вырабатывают тестостерон. Но в его клетках отсутствуют рецепторы или структуры, воспринимающие тестостерон. Поэтому этого гормона как бы и нет. Как следствие, дети, у которых этот синдром проявляется в самой яркой форме, при рождении во всём похожи на девочек. То, что генетически они мужчины, становится ясно, только когда в положенный срок у них не начинаются менструации.

Синдром невосприимчивости к андрогенам дал учёным понять, что гормоны формируют половую принадлежность человека не меньше, чем хромосомы.

До 70 годов мы не умели определять концентрацию гормонов, поэтому только теперь вдруг осознали ситуацию, которая существовала много веков. Есть мнение, что у Жанны д’Арк был этот синдром.

Гормоны влияют на поведение.

Разобравшись в синдроме невосприимчивости к андрогенам, учёные начинают понимать, насколько сильно влияние гормонов на наше развитие. А как обстоит дело с развитием психическим? Сказывается ли влияние гормонов на различиях в мужском и женском поведении.

Если понаблюдать за тем, во что играют дети, то, как правило, мы увидим, что девочки чаще, чем мальчики играют в куклы, а мальчики - в машинки, паровозики и тому подобное. Вот уже 40 лет, как нам стало известно, что тестостерон и другие гормоны оказывают сильное влияние на поведение животных. Однако в отношении человека вопрос долго оставался открытым ввиду чрезвычайной сложности проведения чистых экспериментов. Вполне понятно, что мы не можем просто так вводить людям гормоны, чтобы посмотреть, к чему это приведёт.

Мы с вами не исследователи, но легко обнаруживаем отличия в мужском и женском поведении. Не так-то просто вычленить влияние многих факторов, влияющих на развитие мужское и женское. Но вот недавно появились интересные факты, говорящие о том, что гормоны играют в этом немалую роль.

Женщины с мужскими гормонами.

Для этого учёные стали наблюдать за теми, у кого концентрация гормонов не типична для людей этого пола. Высокая концентрация тестостерона нетипична для женщин. Но именно её учёные обнаружили у женщин с врождённой гиперплазией коры надпочечников. В период внутриутробного развития этих женщин вырабатывается тестостерон в тех же количествах, что и у мужчин.

Врождённая гиперплазия коры надпочечников не столь уж редкое явление. Она встречается у 1 из 6 тысяч детей. Эти девочки в будущем должны будут всю жизнь принимать лекарства, чтобы оставаться женщинами. Компенсационный механизм организма побуждает надпочечники действовать на полную мощность, а единственное, на что они способны – это вырабатывать тестостерон в огромных количествах.

Первым признаком избытка тестостерона у девочек является то, что они рождаются с гениталиями неправильной формы, поскольку тестостерон уже начал превращать женские наружные половые органы в мужские. Учёные обнаружили, что поведение девочек с врождённой гиперплазией коры надпочечников больше похоже на поведение мальчиков.

Что не влияет.

Отвечая на многие вопросы, сразу скажу, что на пол будущего ребёнка не влияет группа крови и резус-фактор отца и матери, форма живота, питание и токсикоз будущей мамы.

Чтобы я могла узнать, была ли статья для вас полезной, пожалуйста, нажмите на кнопки социальных сетей или оставьте ниже комментарий.

- Скажите, профессор! Вы рассказали, что через 5 миллионов лет Солнце достигнет таких размеров, что поглотит Землю. Это правда?
- Нет. Это произойдет только через 5 миллиардов лет.
- А! Ну, слава Богу!


Сегодня в прессе распространены известия о том, что скоро «мир останется без мужчин », что «мужская Y-хромосома — а вместе с нею и весь мужской род — находятся под угрозой вымирания », что «мужчины исчезнут как динозавры », «исчезнут с лица Земли », «исчезнут как биологический вид ». Можно ли верить этим сенсациям? Что такое Y-хромосома и для чего она нужна? Что происходит с ней на самом деле? Правда ли существует угроза для мужского населения? Об этом — данная статья.

Наследственный материал человека организован в 22 пары неполовых хромосом (аутосом) и в две половые хромосомы. Половина хромосом достается нам от отца, половина — от матери. У женщин имеется две X-хромосомы, а у мужчин одна Х- и одна Y-хромосома. На самом деле, картина несколько более сложная. Примерно каждый пятисотый мужчина имеет две X- и одну Y-хромосому (XXY), а каждый тысячный имеет одну X и две Y (XYY). Каждая тысячная женщина имеет три Х (ХХХ).

Наличие более двух половых хромосом не смертельно, но может приводить к нарушениям развития. У XYY-мужчин нарушения выражены незначительно: наблюдаются небольшие ухудшения умственного развития, увеличенный рост, но при этом сохраняется фертильность (способность оставлять потомство). XXY-мужчины, как правило, бесплодны, у них меньше мужского полового гормона — тестостерона, менее развиты гениталии. ХХХ-женщины, как правило, фертильны, в некоторых случаях с отставанием в развитии. Изменение числа копий аутосом значительно более опасно: три копии 21-й хромосомы являются причиной развития синдрома Дауна, утроение любой из остальных хромосом несовместимо с жизнью.

Получается, что пол людей определяется наличием или отсутствием Y-хромосомы: если Y-хромосома есть, получается мужчина, если ее нет — женщина. Такая система определения пола не единственная возможная в мире животных. Например, у плодовой мушки дрозофилы пол определяется числом Х-хромосом и не зависит от наличия Y-хромосомы. У птиц, в отличие от людей, две одинаковые половые хромосомы наблюдаются у самцов, а у самок половые хромосомы разные. У утконоса (уникального яйцекладущего млекопитающего с клювом) имеется целых 10 половых хромосом, которые сцеплены в цепочки по пять: бывают ХХХХХХХХХХ-самки и XYXYXYXYXY-самцы. Более того, одна часть цепочки половых хромосом утконоса имеет сходство с половыми хромосомами птиц, а другая — с половыми хромосомами других млекопитающих.

В очень редких случаях среди людей, грызунов и некоторых других видов млекопитающих можно встретить самца без Y-хромосомы, а так же самку с Y-хромосомой. Было показано, что для определения пола необходима не вся Y-хромосома, а только малая ее часть, всего лишь один ген. Ген SRY, расположенный на Y-хромосоме, отвечает за развитие семенников. Если этот ген «перескочит» на другую хромосому, то может получиться XX-самец. Если в результате мутации ген SRY будет выведен из строя на Y-хромосоме, может быть получена XY-самка.

1991 году в научном журнале Nature была опубликована работа молекулярного биолога Питера Купмана, которому удалось встроить ген SRY c Y-хромосомы мышей в мышиные эмбрионы с двумя Х-хромосомами. Такие трансгенные мыши внешне оказались самцами. Так было подтверждено, что ключевое генетическое отличие между мужчиной и женщиной кроется в одном-единственном гене.

Но как один ген может так сильно повлиять на развитие человека? Оказалось, что ген SRY может активировать другие гены, отвечающие за развитие мужских половых признаков. У самки эти гены выключены, но появление гена SRY может привести к их включению. Иными словами, в геноме каждой женщины есть почти все необходимые инструкции для развития мужчины, но эти инструкции хранятся под замком. Ген SRY — ключ к этому замку.

Хотя работы Купмана показали, что одного гена достаточно, чтобы получить ХХ-мышей со всеми внешними признаками самцов, полученные самцы оказались бесплодны. Это означает, что для полноценного развития самца одного гена все-таки недостаточно. Тем не менее многие ученые склоняются к мнению, что количество генов, важных для развития полноценных мужчин, на Y-хромосоме невелико.

Последние данные свидетельствуют о том, что Y-хромосома стала половой хромосомой примерно 150 миллионов лет назад. Тогда Х- и Y-хромосомы были очень похожи, так же как современные неполовые хромосомы. С тех пор Y-хромосома неуклонно уменьшалась в размерах и утратила около 97% своих генов. Став половой хромосомой, она начала накапливать гены, полезные для мужчин, но вредные для женщин, и постепенно избавляться от всего остального.

Кроме того, Y-хромосома мутирует почти в 5 раз быстрее, чем остальные хромосомы. Считается, что это связано с тем, что появлению мужских половых клеток предшествует большое количество делений. Дело в том, что при каждом делении клеток необходимо копировать хромосомы, чтобы каждой новой клетке достался полноценный набор генетического материала. Но система копирования ДНК не идеальна: при каждом копировании возникают ошибки, своеобразные опечатки, мутации. Y-хромосома в каждом поколении проходит через большое количество копирований, потому что наследуется только через мужские половые клетки, а значит, накапливает больше ошибок, связанных с копированием. Аутосомы наследуются как от мужчин, так и от женщин, а значит, в половине поколений наследуются через женские половые клетки. Вследствие этого они в среднем проходят через меньшее число делений на одно поколение и накапливают меньше мутаций.

Если грубо посчитать скорость исчезновения генов с Y-хромосомы и количество оставшихся на ней генов, можно представить, что Y-хромосома утратит все свои гены примерно через десять миллионов лет. Сегодня ведется дискуссия о том, грозит ли Y-хромосоме полное исчезновение в будущем. Во-первых, опыты Купмана показывают, что Y-хромосома не так уж нужна: если пара-тройка важных для определения пола генов перескочат с Y-хромосомы на аутосому, мы получим новую систему определения пола. В такой системе от Y-хромосомы можно будет избавиться без особых последствий. Действительно, у некоторых видов грызунов в ходе эволюции Y-хромосома была полностью утрачена, что указывает на то, что описанный выше сценарий, действительно, возможен. Другая точка зрения гласит, что ничего с Y-хромосомой не случится. Сегодня показано, что существует ряд эволюционных механизмов, активно сохраняющих оставшиеся на Y-хромосоме гены. Совершено не обязательно, что Y-хромосома продолжит утрачивать оставшиеся на ней гены с той же скоростью, с которой она утрачивала их раньше. Несмотря на наличие разных точек зрения, ученые сходятся во мнении, что уменьшение Y не приведет к катастрофическим последствиям для человечества. Мужчины останутся.

Генетические исследования человеческого организма являются одними из самых нужных для населения всей планеты. Именно генетика имеет большое значение для исследования причин возникновения наследственных болезней или предрасположенности к ним. Мы расскажем, сколько хромосом у человека, и для чего может быть полезна эта информация.

Сколько пар хромосом у человека

Клетка организма предназначена для хранения, реализации и передачи наследственной информации. Она создается из молекулы ДНК и называется хромосомой. Многих интересует вопрос, сколько пар хромосом у человека.

Человек обладает 23 парами хромосом. До 1955 года ученые ошибочно подсчитали количество хромосом равное 48, т.е. 24 пары. Ошибка была обнаружена учеными при использовании более точной техники.

Набор хромосом различен в соматических и половых клетках. Удвоенный (диплоидный) набор присутствует только в клетках, определяющих строение (соматику) тела человека. Одна часть имеет материнское происхождение, другая часть – от отца.

Гоносомы (половые хромосомы) имеют только одну пару. Они различны по составу генов. Поэтому в зависимости от пола человек имеет разный состав пары гоносом. От того, сколько хромосом у женщин, пол будущего ребенка не зависит. Женщина имеет набор ХХ хромосом. Её половые клетки не влияют на закладывание половых признаков при оплодотворении яйцеклетки. Принадлежность к определенному полу зависит от информационного кода о том, сколько хромосом у мужчины . Именно разница ХХ и ХY хромосом определяет пол будущего ребенка. Остальные 22 пары хромосом называют аутосомными, т.е. одинаковыми для обоих полов.

  • У женщины – 22 пары аутосомных хромосом и одна пара ХХ;
  • У мужчины – 22 пары аутосомных хромосом и одна пара ХY.

По своему строению хромосомы меняются при делении в процессе удваивания соматических клеток. Эти клетки постоянно делятся, однако набор из 23 пар имеет постоянное значение. На структуру хромосом влияет ДНК. Гены, входящие в состав хромосом, под воздействием ДНК образуют определенный код. Таким образом, информация, полученная в процессе кодирования ДНК, определяет индивидуальные признаки человека.

Изменения количественной структуры хромосом

Кариотип человека определяет совокупность хромосом. Иногда он может видоизменяться под действием химических или физических причин. Нормальное количество 23 хромосом в соматических клетках может меняться. Этот процесс называется анэуплоидией.

  1. Количество может быть меньше, тогда это – моносомия.
  2. Если нет пары аутотентичных клеток, тогда эта структура называется нуллисомия.
  3. Если в паре клеток, из которых состоит хромосома, добавлена третья, тогда это – трисомия.

Различные изменения количественного набора приводит к получению человеком врожденных заболеваний. Аномалии в строении хромосом вызывают синдром Дауна, синдром Эдвардса и другие состояния.

Существует также отклонение, называемое полиплоидией. При этом отклонении происходит кратное увеличение хромосом, то есть удвоение пары клеток, которая входит в состав одной хромосомы. Диплоидная или половая клетка может быть представлена трижды (триплоидия). Если она представлена 4 или 5 раз, то такое увеличение называется тетраплоидией и пентаплоидией соответственно. Если у человека есть такое отклонение, тогда он умирает в течение первых дней жизни. Растительный мир довольно широко представлен полиплоидией. Кратное увеличение хромосом присутствует у животных: беспозвоночных, рыб. Птицы с такой аномалией погибают.


Голос за пост - плюсик в карму! :)

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама