THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

ЛЕКЦИЯ 1. ВВЕДЕНИЕ В ТОПОГРАФИЧЕСКУЮ АНАТОМИЮ

Топографическая анатомия («местная регионарная анатомия») – изучает строение тела по областям, – взаимное расположение органов и тканей в различных областях тела.

1. Задачи топографической анатомии:

голотопия – области расположения нервов, сосудов и т. д.

послойное строение области

скелетотопия – отношение органов, нервов, сосудов к костям скелета.

силетопия – взаимоотношение сосудов и нервов, мышц и костей, органов.

Типовая анатомия – характерная для определенного типа телосложения. Индекс относительной длины туловища равняется длине туловища (distantia jugulopubica), деленной на рост и умноженной на 100 %:

31,5 и больше – брахиморфный тип телосложения.

28,5 и меньше – долихоморфный тип телосложения.

28,5 -31,5 – мезоморфный тип сложения.

Возрастная анатомия – организмы детей и пожилых людей отличаются от людей зрелого возраста – все органы с возрастом опускаются. Клиническая анатомия . Любая операция состоит из двух частей:

Оперативный доступ

Оперативные приемы.

Оперативный доступ – способ обнажения патологически измененного органа, зависит от телосложения больного, его состояния, стадии патологического процесса.

Критерии оценки оперативного доступа (по Шевкуненко-Сазону-Ярошевичу).

Альфа – угол операционного действия (должен быть ни большим, ни маленьким)

Зона доступности S (см 2)

Ось операционного действия (СД) – линия, проведенная от глаза хирурга до патологического органа

Бета – угол наклона оси операционного действия – чем бета ближе к 90 градусам, тем лучше

ОС – глубина раны. Относительная глубина раны равна ОС, деленное на АВ – чем меньше, тем лучше разрез.

Оперативный прием – зависит от стадии процесса и состояния больного. Оперативные приемы подразделяются на радикальные и паллиативные. Радикальная операция – устраняет причину заболевания (аппендэктомия). Паллиативная операция – устраняет некоторые симптомы заболевания (метастазы в печени при раке пилорического отдела желудка – создается новый выход из желудка – гастроэнтероскопия). Операции отличаются сроком выполнения. Экстренные показания:

Кровотечения, ранения сердца, крупных сосудов, полых органов;

Прободная язва желудка;

Ущемленная грыжа;

Аппендицит, перешедший в перитонит.

Срочные – через 3–4 ч наблюдения в динамике – острый аппендицит. Плановые – Одномоментные, многоэтапные – при аденоме предстательной железы и задержке мочеиспускания – 1–й этап – цистостома, а через 2 недели – удаление аденомы простаты.

2. История развития топографической анатомии.

I период: 1764–1835 гг. 1764 г. – открытие медицинского факультета Московского университета. Мухин – заведующий кафедрой анатомии, хирургии и повивального искусства. Буяльский – издал анатомо-хирургические таблицы – директор медико-инструментального завода (лопаточка Буяльского). Пирогов – основоположник оперативной хирургии и топографической анатомии. Годы жизни – 1810–1881 гг. В 14 лет поступил в Московский университет. Затем учился в Дерпте у Мойера (тема докторской диссертации – «Перевязка брюшной аорты при паховых аневризмах» – защитил в 22 года). В 1837 г. – атлас «Хирургическая анатомия артериальных стволов» и … получил Демидовскую премию. 1836 г. – Пирогов – профессор хирургии Дерптского университета. 1841 г. – Пирогов возвратился в Петербург в Медико-хирургическую академию на кафедру госпитальной хирургии. Основал 1 анатомический институт. Новые методики, изобретенные Пироговым:

Послойная препаровка трупа

Метод поперечных, замороженных распилов

Метод «ледяной скульптуры».

Распилы производились с учетом функции: суставов – в согнутом и разогнутом состоянии.

Пирогов – создатель «Полного курса прикладной анатомии». 1851 г. – атлас в 900 страниц.

II период: 1835–1863 гг. Выделяются самостоятельные кафедры хирургии и топографической анатомии. III период: 1863-по настоящее время: Бобров, Салищев, Шевкуненко (типовая анатомия), Спасокукоцкий и Разумовский – основатели кафедры топографической анатомии; Клопов, Лопухин.

3 Методы изучения топографической анатомии. На трупе:

Послойная препаровка

Поперечные замороженные распилы

«ледяная скульптура»

Инъекционный метод

Коррозионный метод.

На живых:

Пальпация

Перкуссия

Аускультация

Рентгенография

Компьютерная томография.

4. Пирогов. Труды, принесшие мировую славу:

«Хирургическая анатомия артериальных стволов и фасции» – основа топографической анатомии, как науки

«Полный курс прикладной анатомии человеческого тела с рисунками. Анатомия описательно-физиологическая и хирургическая»

«Топографическая анатомия, иллюстрированная разрезами, проведенными через тело человека в 3–х направлениях». Соблюдается основное правило: сохранение органов в их естественном положении.

Использование метода распилов для изучения не только морфологии, но и функции органов, а также различия в их топографии, связанные с изменением положения тех или иных частей тела и состояния соседних органов

Использовал метод распилов для разработки вопроса о наиболее целесообразных доступах к различным органам и рациональных оперативных приемах

Костнопластическая ампутация голени

Эксперименты на животных (перевязка брюшной аорты)

Изучение действия паров эфира

Впервые преподавал топографическую анатомию оперативной хирургии.

ЛЕКЦИЯ 2. ТОПОГРАФО АНАТОМИЧЕСКОЕ ОБОСНОВАНИЕ ОПЕРАЦИИ НА ГОЛОВЕ

1. Граница между шеей и головой условно проходит по нижнему краю нижней челюсти, верхушке сосцевидного отростка, верхней выйной линии, наружному затылочному бугру и затем переходит симметрично на противоположную сторону. Черепной индекс равняется ширине, деленной на длину и умноженной на 100. Ширина – расстояние между теменными буграми. Длина – от переносицы до наружного затылочного бугра. Черепной индекс :

74,9 и меньше – долихоцефалы (длинноголовые);

75–79,9 – мезоцефалы (среднеголовые)

80 и больше – брахицефалы (круглоголовые).

Внешние различия – отражение внутренних особенностей. Например, доступ к гипофизу – через глоточную ямку; у долихоцефалов – она вытянута вдоль – доступ через носовую полость; у брахицефалов она вытянута поперек – доступ через ротовую полость.

Череп делится на мозговой и лицевой отделы. В мозговом отделе различают свод и основание. В пределах свода выделяют лобную, теменную, височную и затылочную области. Строение мягких тканей лобной, теменной и затылочной областей – одинаковое – это лобно-теменно-затылочная область. Строение височной области – отличается.

2. В лобно-теменно-затылочной области – 6 слоев тканей.

Кожа – очень толстая, в затылочной области толще, чем в лобной, содержит много сальных желез, на большом протяжении покрыта волосами. Кожа прочно связана с сухожильным шлемом, подкожная клетчатка соединяет кожу и шлем в единый слой – скальп.

Подкожная клетчатка – прочная, грубая, ячеистая, зернистая. Содержит много прочных плотных волокон (вертикальных и косых), много потовых желез. В этом слое проходят сосуды и нервы. Мышечно-апоневротический слой – состоит из лобной мышцы спереди, затылочной – сзади и соединяющего сухожильного шлема (galea aponeuroxica). Сухожильный шлем связан с кожей плотно, а с надкостницей – рыхло, поэтому на своде черепа часты скальпированные раны (покровные ткани отслаиваются от надкостницы). Благодаря хорошему кровоснабжению мягких тканей черепа такие раны при своевременной помощи хорошо заживают. Подапоневротическая клетчатка – очень рыхлая. При возникновении гематом и воспалительных процессов в подкожной клетчатке – они не распространяюся. Эти же процессы в подапоневротической клетчатке распределяются по всей голове – сзади – до верхней выйной линии (l. nuchae supperior), спереди – до надбровных дуг, сбоку – до верхней височной линии. Надкостница соединяется с костями черепа с помощью рыхлой поднадкостничной клетчатки. Но в области швов надкостница плотно соединена с костью, клетчатки там нет. Поэтому поднадкостничные гематомы и воспалительные процессы имеют резко очерченные края, соответствующие линии костных швов, и не выходят за пределы одной кости (например, родовые гематомы). Кости свода черепа состоят из наружной и внутренней пластинок (lamina externa ex interna – она же lamina vitrea – «стеклянная»), между которыми находится губчатое вещество – diploё. При травмах свода черепа часто бывает перелом внутренней пластинки при неповрежденной наружной.

ЛЕКЦИЯ 3. ТОПОГРАФИЯ И ОСОБЕННОСТИ СТРОЕНИЯ ВИСОЧНОЙ ОБЛАСТИ

1. Кожа – в задней части области ее строения сходна с кожей лобно-темеено-затылочной области; в переднем отделе – кожа тонкая, подкожная клетчатка рыхлая – кожа может быть собрана в складки. В подкожной клетчатке расположены слабо развитые мышцы ушной раковины, сосуды и нервы. В височной области поверхностная фасция образует тонкий листок, который постепенно теряется в клетчатке лица. В состав височного апоневроза входят поверхностный и глубокий листки, они расходятся в области скуловой дуги, причем поверхностный листок прикрепляется к наружной поверхности скуловой дуги, а глубокий – к внутренней. Между листками расположен межапоневротический слой жировой клетчатки . Височный апоневроз в области верхней височной линии плотно связан с надкостницей, поэтому патологические скопления, образующиеся под ним, не направляются дальше на свод черепа, а распространяются в подвисочную ямку и на лицо.

Под глубоким листком височного апоневроза расположен подапоневротический слой клетчатки , который позади скуловой дуги и скуловой кости переходит в жировой комок Биша. Височная мышца расположена непосредственно на надкостнице. Мышца начинается от нижней височной линии, позади скуловой дуги переходит в мощное сухожилие, которое крепится к венечному отростку нижней челюсти. Надкостница в нижнем отделе области прочно связана с подлежащей костью. В остальных отделах связь с костью так же рыхла, как и в лобно-теменно-затылочной области. Чешуя височной кости очень тонка, почти не содержит губчатого вещества, легко подвергается переломам. А так как к чешуе снаружи и изнутри прилежат сосуды, то переломы ее сопровождаются тяжелыми кровоизлияниями и сдавлением мозга. Между височной костью и dura mater проходит средняя артерия твердой мозговой оболочки (a. meningea media), основная артерия, питающая dura mater. Эта артерия и ее ветви плотно соединены с dura mater (твердой мозговой оболочкой), а на костях образуют бороздки – sulci meningei. Кренлейн предложил схему черепно-мозговой топографии, благодаря которой можно определить положение a. meningea media, ее ветвей, и спроецировать на покровы черепа важнейшие борозды больших полушарий (роландову и сильвиеву борозды).

2. Особенностью кровоснабжения мягких тканей головы является богатое артериальное кровоснабжение. Всего 10 артерий кровоснабжают мягкие ткани головы. Они составляют 3 группы:

Передняя группа – aa. supraorbitalis, supratrochlearis из системы a. carotica interna

Боковая группа – a. temporalis и a. auricularis posterior из системы a. carotica externa

Задняя группа – a. occipitalis из a. carotica externa.

Эти артерии с обеих сторон анастомозируют. В результате обильного кровоснабжения мягких тканей головы: очень сильно кровоточащие раны; раны очень быстро заживают и очень устойчивы к инфекции. Для сосудов характерн о меридиальное направление (все сосуды идут к темени) также идут и нервы. Это надо учитывать при разрезе.

Основные сосуды расположены в подкожном слое клетчатки, ближе к апоневрозу, их оболочка срастается с фиброзными волокнами – на разрезе сосуды не спадаются.

Венозный кровоток. Вены головы делятся на 3 этажа:

Внечерепная система (вены идут параллельно артериям)

Вены костей черепа (v. diploae)

Внутричерепная система (синусы твердой мозговой оболочки).

Все эти системы связаны и кровь циркулирует в обе стороны (в зависимости от величины внутричерепного давления), что создает опасность распространения флегмоны мягких тканей в остеомиелит, менингит, менингоэнцефалит.

Точки для проводниковой анестезии (месторасположение основных нервов на голове)

Середина верхнеглазничного края – n. Supraorbitalis

Наружный край глазницы – n. Zugomaticotemporalis

Впереди козелка – n. auriculotemporalis

Позади ушной раковины – n. auriculus magnus

Середина между сосцевидным отростком и наружным затылочным бугром – n. occipitalis major et minos.

3. Особенности строения сосцевидного отростка:

Трепанационный треугольник Шипо – расположен в переднее-вехнем участке области сосцевидного отростка. Здесь производят трепанацию сосцевидной части височной кости при гнойном мастоидите и хроническом среднем отите. Границы треугольника Шипо: спереди – задний край наружного слухового отверстия с находящейся на нем остью (spina supra meatum), сзади – сосцевидный гребешок (crista mastoidea), сверху – горизонтальная линия – продолжение кзади скуловой дуги.

В толще сосцевидного отростка есть костные полости – cellula mastoidea. Они содержат воздух и выстланы слизистой оболочкой. Самая крупная полость – пещера (antrum mastoideum) посредством aditusad antreem сообщается с барабанной полостью

К задней стороне трепанационного треугольника примыкает проекция сигмовидной пазухи

Кпереди от треугольника Шипо, в толще сосцевидного отростка, проходит нижний отдел канала лицевого нерва.

При трепанации сосцевидной части кости можно повредить сигмовидную пазуху, лицевой нерв, полукружные каналы и верхнюю стенку барабанной плоскости.

ЛЕКЦИЯ 4. ТОПОГРАФИЧЕСКАЯ АНАТОМИЯ ОСНОВАНИЯ ЧЕРЕПА И ГОЛОВНОГО МОЗГА

1. Черепные ямки . На внутреннем основании черепа различают три черепные ямки – переднюю, среднюю, заднюю (fossa cranii anterior, media et posterior). Передняя черепная ямка – отграничена от средней краями малых крыльев клиновидной кости и костным валиком (limbus sphenoidalis), который лежит кпереди от sulcus chiasmatis. Расположена fossa cranii anterior над полостью носа и глазницами. В пределах ямки расположены лобные доли мозга. По бокам от crista gali лежат обонятельные луковицы (bulbi oltactorii), от которых начинаются обонятельные тракты. Отверстия передней черепной ямки: foramen caecum, отверстия lamina cribrosa решетчатой кости (пропускают n. olfactorii, a. ethmoidalis anterior, одноименные вену и нерв). Средняя черепная ямка – отделена от задней стенкой турецкого седла и верхними краями пирамид височных костей. Центральная часть средней черепной ямки имеет углубление – ямку турецкого седла, где располагается гипофиз; кпереди от турецкого седла в sulcus chiasmatis расположен перекрест зрительных нервов. Боковые отделы средней черепной ямки образованы большими крыльями клиновидных костей и передними поверхностями пирамид височных костей, содержат височные доли мозга. У верхушки пирамиды располагается полулунный узел тройничного нерва. По бокам от турецкого седла расположена пещеристая пазуха. Отверстия средней черепной ямки: canalis opticus (пропускает n. opticus и n. ophtalmica); fissura orbitalis superior (пропускает vv. ophtalmicae; n. oculomotorius (III); n. trochlearis (IV); n. ophthalmicus; n. abducents (VI); foramen rotundum (пропускает n. maxillaris), foramen ovale (пропускает n. mandibularis), foramen spinosos (пропускает a. meningea media), foramen lacerum (пропускает n. petrosus major).

Задняя черепная ямка – содержит мост, продолговатый мозг, мозжечок, поперечную, сигмовидную и затылочную пазухи. Отверстия задней черепной ямки: porus acusticus internus ((внутреннее слуховое отверстие) – пропускает a. labyrinthi, n. facialis (VII), n. statoacusticus (VIII), n. intermedius); foramen jugularis (пропускает n. glossopharyngeus (IX), n. vagas (X), n. accessorius willisii (XI), v. Jugularis interna); foramen magnum (проходит продолговатый мозг с оболочками, aa. Vertebralis, plexus venosi vertebrales interna, спинномозговые корешки n. accessorius); canalis hypoglossi (проходит n. hypoglossus (XII)).

2. Оболочки головного мозга

Твердая мозговая оболочка (dura mater encepnali) состоит из двух листков и рыхлой клетчатки между ними. На своде черепа dura mater связана с костями рыхло, между ними находится щелевидное эпидуральное пространство. На основании черепа связь между dura mater и костями очень прочная. В сагиттальном направлении от crista gali к protuberantia occipitalis interna тянется верхний серповидный отросток dura mater, отделяющий большие полушария друг от друга. В заднем отделе мозговой серп соединяется с другим отростком dura mater – палаткой мозжечка, отделяющим мозжечок от больших полушарий мозга. Серповидный отросток dura mater содержит верхнюю сагиттальную венозную пазуху (sinus sagittalis superior), которая прилежит к костям черепа. Нижний свободный край мозгового серпа содержит нижнюю сагиттальную пазуху (sinus sagittalis inferior). По линии соединения мозгового серпа и палатки мозжечка расположена прямая пазуха (sinus rectus). В толще серпа мозжечка содержится затылочная пазуха (sinus occipitalis).

В средней черепной ямке по бокам от турецкого седла расположена парная пещеристая пазуха (sinus cavernosus). По линии прикрепления палатки мозжечка расположена пещеристая пазуха (sinus transversus), которая продолжается в сигмовидную пазуху, расположенную на внутренней поверхности сосцевидной части височной кости.

Паутинная и мягкая оболочка . Между паутинной оболочкой (arachnoidea encephali) и dura mater находится субарахноидальное пространство. Паутинная оболочка тонкая, не содержит сосудов, не заходит в борозды, ограничивающие мозговые извилины. Паутинная оболочка образует пахионовы грануляции (ворсинки), прободающие dura mater и проникающие в венозные пазухи. Мягкая мозговая оболочка (pia mater encephali) богата сосудами, заходит во все борозды, проникая в мозговые желудочки, где ее складки вместе с сосудами образуют сосудистые сплетения.

3. Подпаутинное пространство, желудочки мозга, цистерны

Пространство между мягкой мозговой и паутинной оболочками – субарахноидальное содержит спинномозговую жидкость. Желудочки мозга (их четыре). IV желудочек – с одной стороны сообщается с субарахноидальным пространством, с другой – переходит в центральный канал спинного мозга; через сильвиев водопровод IV желудочек сообщается с III. Боковой желудочек мозга имеет центральный отдел (в теменной доле), передний рог (в лобной доле), задний рог (в затылочной доле) и нижний рог (в височной доле). Через 2 межжелудочковых отверстия передние рога боковых желудочков сообщаются с III желудочком. Цистерны – несколько расширенные отделы подпаутинного пространства. Самая важная – cisterna cerebellomeolullaris – сверху ограничена мозжечком, спереди – продолговатым мозгом. Это цистерна через среднее отверстие IV желудочка сообщается с последним, внизу переходит в субарахноидальное пространство спинного мозга.

4. Основные борозды и извилины головного мозга

Центральная борозда – sulcus elutralis (Rolando) – отделяет лобную долю от теменной.

Боковая борозда – sulcus lateralis – отделяет лобную и теменную долю от височной.

Теменная затылочная борозда – sulcus parietooccipitalis – отделяет теменную долю от затылочной. В предцентральной извилине находится ядро двигательного анализатора, в позадицентральной – ядро кожного анализатора. Обе эти извилины связаны с противоположной стороной тела.

ЛЕКЦИЯ 5. ЛИЦЕВОЙ ОТДЕЛ ГОЛОВЫ

I. Кожа лица – тонкая, подвижная. Подкожножировая клетчатка содержит мимические мышцы, мышцы, сосуды, нервы. Проток околоушной железы.

Кровоснабжение – из ветвей a. carotis externa: a. temporalu superficialis, a. facialis, a. maxillaris и a. Ophthalmica (из a. carotis interna). Сосуды на лице образуют сеть и хорошо анастомозируют. На лице – 2 венозных сети – поверхностная (состоит из лицевой и подчелюстной вен) и глубокая (представлена крыловидным сплетением). Крыловидное сплетение связано с пещеристой пазухой dura mater через эмиссарии и вены глазницы, потому гнойные процессы на лице часто осложняются воспалением мозговых оболочек, флебитами пазух. Двигательные нервы ; система лицевого нерва – иннервирует мимическую мускулатуру, система третьей ветви тройничного нерва – иннервирует жевательную мускулатуру. Кожа лица иннервируется ветвями всех трех стволов тройничного нерва и ветвями шейного сплетения. Проекции костных отверстий , через которые проходят нервы. Foramen infraorbitale проецируется на 0,5 см ниже середины нижнеглазничного края. Foramen mentale – на середине высоты тела нижней челюсти между 1 и 2 малыми коренными зубами. Foramen manolibulare – со стороны полости рта – на середине расстояния между передним и задним краем ветви нижней челюсти на 2,5–3 см кверху от нижнего края.

2. Области лица

Область глазницы – 2 отдела; поверхностный, расположенный кпереди от глазничной перегородки и составляющий область век (regio palpebra)) и глубокий (расположен кзади от глазничной перегородки и составляющий собственную область глазницы (regio orbitalis propria)), в которой заложено глазное яблоко с его мышцами, нервы, жировая клетчатка и сосуды.

Собственная область глазницы. Верхняя стенка глазницы – дно передней черепной ямки и лобной пазухи; нижняя стенка – крыша верхнечелюстной пазухи, латеральная стенка глазницы – клиновидная и скуловая кости; пазухой и клетками решетчатого лабиринта.

Отверстия в стенках глазницы:

В медиальной стенке – переднее и заднее решетчатые отверстия

Между латеральной и верхней стенками, в заднем отделе – верхняя глазничная щель (соединяет глазницу с верхней черепной ямкой)

Между латеральной и нижней стенками – нижняя глазничная щель (соединяет глазницу с височной и подвисочной ямками, крыловидной пазухой).

В полости глазницы – 7 мышц: m. levator palpebrae superiores – относится к верхнему веку; остальные 6 мышц – относятся к глазному яблоку: 4 из них прямые (наружная, внутренняя, верхняя, нижняя) и 2 косые (верхняя и нижняя).

Зрительный нерв занимает центральное положение в глазнице. Область носа – состоит из наружного носа и полости носа. Полость носа . Перегородка делит носовую полость надвое. На боковых стенках находятся носовые раковины (по 3 с каждой стороны), отграничивающие 3 носовых хода (нижний, средний, верхний). В полость носа открываются: над верхней раковиной – пазуха клиновидной кости, в верхний носовой ход – задние ячейки лабиринта решетчатой кости, в средний носовой ход – средние и передние ячейки лабиринта решетчатой кости, лобная и верхнечелюстная пазуха, в нижний носовой ход – слезноносовой канал (canalis nasolacrimalis). Добавочные полости носа – лобная, верхняя челюстная, клиновидная и ячейки лабиринта решетчатой кости.

Область рта – полость ротовая и область губ. Полость рта – при сомкнутых челюстях делится на собственно ротовую полость и преддверие рта.

Щечная область – наиболее развита подкожножировая клетчатка, к ней примыкает жировой комок Биша (лежит между щечной и жевательной мышцей). Мимические мышцы щечной области: нижняя часть m. orbitalis oculi, m. quadratus labii superiores, m. zugomaticus. Чувствительные нервы щечной области: ветви n. trigeminus – n. infraorbitalis и nn. bucalis. Двигательные нервы – ветви n. facialis.

Околоушно-жевательная область – под поверхностной фасцией расположена собственная фасция, образующая капсулу околоушной железы. Околоушная железа восполняет мышечно-фасциальное пространство (spatium parotideum) – ложе железы. Вверху spatium parotideum примыкает к наружному слуховому проходу – здесь «слабое место» в фасциальном покрове железы, подвергающееся разрыву при гнойных паротитах, чаще вскрывающихся в наружный слуховой проход.

Глубокая область лица – содержит образования, относящиеся к жевательному аппарату: верхнюю и нижнюю челюсти, m. pterygoideus lateralis et medialis.

Анатомия - дисциплина, которая имеет огромное значение в медицине. Эта наука изучает как внешнее строение организма, так и его внутреннюю структуру. По мере накопления хирургического опыта на базе анатомии формировалась, а потом выделилась в отдельную дисциплину топографическая анатомия, которая дает возможность хирургам, проводящим операции, изучать строение организма человека по отдельным областям, обращая внимание на взаимоотношения внутренних органов.

в анатомии?

Анатомическая топография - это раздел анатомии, который занимается изучением послойного строения областей тела человека, расположения органов относительно друг друга, голотопии и скелетотопии, а также кровоснабжения и лимфотока при нормальном развитии организма и при патологии, учитывая все возрастные и половые особенности человека. Этот раздел анатомии имеет большое значение для медицины, так как представляет собой теоретическую основу для оперативной хирургии.

Описание раздела

Анатомическая топография - это наука, которая занимается изучением строения организма человека по известным частям тела, которые условно выделены, например туловище, голова, конечности и прочее. Каждая часть подразделяется на области небольших размеров, особое внимание здесь отведено расположению анатомических формирований, а также их изображению на поверхности тела.

Таким образом, этот раздел анатомии является основой диагностики внутренних органов. Так, топография внутренних органов проводится при помощи метода изучения тканей послойно в определенных областях организма. Это необходимо для практики медика, чтобы он имел возможность определить месторасположение патологии, а также мог указать точные данные для проведения хирургических вмешательств, в ходе которых возникает необходимость рассекать ткани вглубь послойно.

Задачи топографии

Главной задачей изучения топографии в анатомии является точное описание анатомических областей послойно. Области здесь представляют отделы тела, которые условно отграничены между собой линиями, как естественными, так и искусственно проводимыми. Естественные границы выступают в виде кожных складок, костных выступов и т. д.

Таким образом, топография в анатомии - это дисциплина, которая также изучает ориентиры определенных областей по костям и мышцам, изображение внутренних органов, сосудов и нервов на поверхность человеческого тела, месторасположение внутренних органов относительно областей тела (голотопия), относительно скелета (скелетотопия), а также к соседним анатомическим формированиям (синтопия). Например, голотопически селезенка находится в левом подреберье, скелетотопически - на территории девятого, десятого и одиннадцатого ребер, а синтопически селезенка расположена возле диафрагмы, желудка, левых почки и надпочечника, хвоста поджелудочной железы.

Задачей топографии является и изучение форм индивидуального анатомического строения тела человека. Здесь принято выделять брахиморфную и долихоморфную формы, что обуславливается телосложением человека и тяжестью травмы. С формой телосложения совпадает топография органов, что находятся в определенной полости тела человека. Это, в свою очередь, предопределяет хирургические приемы.

Цели топографии

Анатомическая топография ставит перед собой такие цели:

  1. Отображение рельефа определенной области.
  2. Изучение положения слоев, а также их свойств.
  3. Выявление координат определенного органа в пространстве двухмерном.
  4. Описание взаимоотношений органов в системе координат трехмерной.

Таким образом, основы топографии лежат в изучении таких отраслей науки, как рельефная анатомия, стратиграфия, планиметрия и стереометрия. Рельефная анатомия играет важную роль в постановке диагноза, а также в уточнении видений в динамике прогрессирования патологии и результатах лечения. Рельефные особенности, которые обнаруживаются при осмотре человека, бывают динамическими и статическими.

Предмет топографии

Чтобы врач мог ориентироваться в определенной области, ему нужно уметь прощупывать основные костные формирования (ориентиры), мышцы, сухожилия. При определенном положении мышца и сухожилия видны сами по себе, касается это и поверхностных вен. Также здесь имеет важное значение умение прощупывать пульс артерий, необходимо знать проекции нервов и сосудов (линии, которые способствуют их положению в глубине) для того, чтобы иметь к ним доступ во время операций. Также необходимо уметь проецировать на поверхность тела человека контуры органов, чтобы иметь представление об их границах. При ощупывании органы, которые подвержены патологическому изменению, могут быть исследованы. Важную роль играет здесь исследование лимфатических узлов и кровеносных сосудов, чтобы правильно определять пути развития окольного кровообращения.

Топография внутренних органов и сосудов дает множество сведений, которые важны для практической медицины, в первую очередь для практикующих хирургов и терапевтов. Этот раздел анатомии принято называть прикладным.

Предметом топографии является изучение анатомии конечностей при травмах, пути распространения гематом, развитие и прочее. Также важное значение имеет изучение тех изменений в топографии, что протекают под воздействием импульсов нервной системы. Так, топография сосудов может поддаваться изменениям в зависимости от того, как сокращаются отдельные группы мышц.

Методы анатомической топографии

Методы исследования, которые применяются в анатомической топографии, подразделяют на две группы: диагностика человека живого и диагностика трупа. Поверхность человеческого тела изучают для того, чтобы правильно определить ориентиры костей и мышц, выявить направление операционных разрезов. Сегодня широкое распространение получили такие методы диагностики, как компьютерная топография, рентгенография, ангиография, рентгеноскопия и стереография, сцинтиграфия радионуклидная. Часто применяется термография с учетом инфракрасного излучения, а также МРТ.

Чтобы поставить более точный диагноз, врачи используют эндоскопические методы диагностики, куда относят кардиоскопию, гастроскопию, бронхоскопию и ректороманоскопию. Нередко внедряется метод экспериментального моделирования для того, чтобы была возможность изучить изменения при разных патологических состояниях и операциях. При этом патологические состояния изучаются на животных, чтобы в будущем скорректировать хирургические приемы и методы. Так, топография - это отрасль анатомии, которая имеет важное значение для хирурга. Она помогает ему правильно изучить строение и расположение органов, чтобы эффективно проводить оперативные вмешательства.

Изучение трупа в топографии

При исследовании мертвого тела используются такие методы, как препарирование топографоанатомическое. Оно позволяет при помощи отдельных разрезов, которые делаются послойно, исследовать все ткани в определенной области, а также соотношение сосудов и нервов, расположение органов. Впервые данный метод (распил трупа) был предложен Пироговым Н. И. При помощи распилов трупа, которые проводятся в горизонтальной, сагиттальной и фронтальной плоскостях, с точностью можно определить локализуцию органов в теле, а также их месторасположение относительно друг друга. Был предложен Пироговым Н. И. и метод скульптурный, который характеризуется удалением на мертвом теле всех тканей, которые окружают определенный орган, нуждающийся в изучении.

Топография - это дисциплина, в которой применяется инъекционный метод исследования. Он предназначен для того, чтобы иметь возможность изучать сосудистую систему человека. Сосуды (лимфатические и кровеносные) наполняются растворами различных цветов, затем их начинают препарировать или используют рентгенографию. Коррозионный метод исследования представляет собой заполнение сосудов особыми массами. Далее ткани растворяют в кислоте, получая слепки формирований, которые нужно изучить.

Современные методы исследования

Сегодня топография органов человека предполагает использование гистологических, биохимических, гистохимических методов диагностики. Широко применяется ауторадиография, чтобы изучать накопление и распределение по тканям и органам радионуклидов. Для того чтобы выявить микроскопические формирования, используют электронно-микроскопический метод диагностики. Применяют микроскопы электронные, которые позволяют сканировать и просвечивать органы и ткани человека.

Итоги

Сегодня топография органов широко используется в медицине, в частности в оперативной хирургии и терапии. Основоположником данной дисциплины является Пирогов Н. И. Эта отрасль анатомии помогает правильно проводить оперативные вмешательства, которые не влекут за собой негативных последствий. Без этих знаний нельзя выполнять операции. Дисциплина помогает понять механизмы патологических процессов, поставить точный диагноз, спрогнозировать развитие компенсаторных процессов после хирургических вмешательств.


Уважаемые товарищи!


Вы приступили к изучению нового для вас предмета - оперативной хирургии и топографической анатомии.

В системе подготовки врача наш предмет занимает исключительно важное место, создавая базу для перехода от теоретической подготовки к

практическому применению полученных знаний.

Как видно из названия, дисциплина наша двуединая, причем топографическая анатомия относится к анатомическим дисциплинам, а оперативная

хирургия - к хирургическим. Рассмотрим каждую из них в отдельности.

Топографическая анатомия , так же как и анатомия человека, изучает строение тела в нормальном его состоянии. Однако методы изучения и

задачи этих предметов совершенно различные. Анатомия человека изучает отдельные системы и органы без связи их друг с другом, т.е. изолированно.

Помните, как вы изучали последовательно…?

Это был начальный этап вашего анатомического образования. У нас вы должны завершить его.

Если сравнить изучение наших предметов с работой художника, пишущего монументальную картину, то можно образно сказать так: изучая

анатомию человека, вы создавали этюды или, как говорят, "были на этюдах"; теперь же вам предстоит все это собрать воедино, не нарушив

композицию, и получить замечательную в своем совершенстве картину, каковым является человек.

Вторая особенность состоит в том, что, занимаясь топографической анатомией, мы будем отдавать предпочтение изучению наиболее сложных

областей. Кроме того, всегда будем обращать внимание на практическую значимость изучаемых анатомических деталей. Таким образом, для нашего

предмета характерна прикладная направленность. И это ее третья особенность.

Знания топографической анатомии необходимы для врача самых различных специальностей, т.к. служат основой для всех широко

распространенных общемедицинских методов топической диагностики (пальпация, перкуссия, аускультация, рентгеноскопия), для различных методов

инструментальных исследований. Однако при изучении нашего предмета будет уделено больше внимания взаимосвязи между топографической

анатомией и хирургией.

Свое название - "топографическая" - дисциплина получила от греческих слов (место, положение) и (описывать), что по смыслу означает описание

расположения органов и тканей по областям.

С этой целью человеческое тело разделено на области. Например…

Методы изучения топографической анатомии


К наружным ориентирам относятся видимые или пальпируемые костные образования (бугры, бугристости, гребни), мышцы, сухожилия.

Благодаря постоянству, их используют для определения положения глубоко лежащих образований (сосудов, нервов, внутренних органов). Пример.

Производя перкуссию сердца для определения границ, используются такие наружные ориентиры как края грудины, ребра и межреберья. Другой

пример. Для того, чтобы определить проекцию передней б/берцовой артерии проводят проекционную линию между двумя точками: верхняя из них

находится на середине расстояния между бугристостью б/берцовой кости и головкой м/берцовой, а нижняя - на середине расстояния между

лодыжками. По этой проекционной линии можно обнажить артерию на любом уровне голени.

Использование наружных ориентиров для определения проекции сосудисто-нервных пучков, органов составляет самостоятельный раздел

топографической анатомии, получивший название проекционной .

Внутренние ориентиры выявляются только после рассечения поверхностных тканей, в глубине раны. Ими служат различные анатомические

элементы, имеющие, как правило, постоянное положение (связки, фасции, мышцы, анатомические треугольники). Например, при бедренной грыже

после рассечения поверхностных слоев отыскивают большую подкожную вену и по месту ее впадения в бедренную находят наружное отверстие

бедренного канала.

Например: селезенка располагается:

Голотопически в левом подреберье,

Скелетотопически на уровне IX - XI ребер,

Синтопически …

Топографическую анатомию как науку и самостоятельную дисциплину создал гениальный русский хирург Н. И. Пирогов (1810 - 1881). Нужно

сказать, что в то время анатомическим сведениям не придавали должного значения, считая, что успех операции зависит целиком от искусства рук

хирурга. Естественно, что острый ум Пирогова не мог мириться с таким положением, и он приступил к активной разработке топографической

анатомии. Этому способствовали и мнения прогрессивных русских ученых. Так, учитель Пирогова - Е. О. Мухин говорил: "Врач, не знающий

анатомии, не только бесполезен, но и вреден".

Пироговым созданы три крупных труда, посвященных топографической анатомии:


Все три работы были удостоены высшей награды - Демидовских премий, что само по себе говорит о значении этих трудов.

Кстати, по хронологии выхода этих работ видно как Н. И. искал точное название новой науки, - вначале "хирургическая анатомия", затем -

"прикладная" и, наконец, остановился на термине "топографическая", как наиболее всеобъемлющем.

В первых двух работах Пирогов впервые применил и предложил использовать новые методы анатомических исследований:

метод тонкого послойного препарирования;

метод субфасциальных инъекций красящими массами.


В 3-ей работе был применен оригинальный метод распилов через замороженное тело в 3-х плоскостях , получивший затем меткое название -

"ледяной анатомии". Очень ценным является то, что метод распилов Пироговым применялся не только в естественном положении тела и его органов,

т. е. в норме, но и при различных физиологических состояниях. Так, распилы через конечности производились не только при статическом положении,

но и при измененных положениях (сгибание, разгибание, приведение, отведение и т. д.).

Для уточнения топографии внутренних органов Пирогов перед замораживанием трупа наполнял исследуемый орган - желудок или мочевой

пузырь водой, а кишки - воздухом. Он вводил жидкости в полости плевры и брюшины, чтобы изучить смещение легкого и сердца при плеврите,

изменение положения брюшных органов - при асците. Этот метод изучения топографии внутренних органов получил образное название

основой для поисков наиболее национальных оперативных доступов к органам, изучения анатомических ориентиров, проекции органов на

поверхность тела.

Н. И. Пирогов являлся создателем I кафедры оперативной хирургии и топографической анатомии в Медико-хирургической академии и Петербурге

(1865 г.). С этого времени оба предмета (оперативная хирургия и топографическая анатомия) вошли в учебную программу всех медицинских вузов

страны и преподаются на одноименных кафедрах.

В советский период большой вклад в развитие топографической анатомии внес В. Н. Шевкуненко (1872-1952). Им создано диалектическое учение

об индивидуальной анатомической изменчивости органов и систем человека.

Основным положением этого учения явился вывод, что: форма всех органов и систем индивидуально различна. Эти различия можно расположить

в виде вариационного ряда, на концах которого окажутся формы наиболее удаленные друг от друга - крайние границы нормы, характеризующие

диапазон индивидуальной изменчивости. Например, желудок, сердце и другие органы.

Следующим важным шагом было выявление различий топографии органов у лиц с разными типами телосложения.

Шевкуненко все многообразие пропорций тела свел к двум противоположным крайним типам: долихоморфному и брахиморфному.

Долихоморфный тип отличается: высоким ростом, укороченным туловищем, удлиненными конечностями, малыми широтными размерами и

острым эпигастральным углом.

Брахиморфный тип характеризуется: низким ростом, удлиненным туловищем, короткими конечностями, преобладанием широтных размеров,

большим эпигастральным углом (больше прямого).

Выявлена корреляция (взаимозависимость) типов телосложения с положением внутренних органов (сердца, поджелудочной железы, слепой кишки

и др.), что послужило основанием для разработки рациональных доступов к ним.

Например, слепая кишка у человека брахиморфного типа телосложения имеет высокое положение, долихоморфного - низкое.

Как уже говорилось, второй составной частью нашего предмета является оперативная хирургия.

Оперативная хирургия - это учение о хирургических операциях.

Задачами оперативной хирургия являются :

Оперативная хирургия тесно связана с развитием не только топографической анатомии, на которой она базируется, но и с развитием клинических

дисциплин, особенно хирургического профиля. Наша задача познакомить вас с основными типами операций на различных областях и более подробно

остановиться на том круге операций, который входит в арсенал хирурга общего профиля.

Всякая операция включает элементы разрушения тканей и, следовательно, потенциально представляет опасность для жизни больного. Поэтому

исход операции во многом зависит от подготовленности хирурги. Отсюда понятна вся мера его моральной и юридической ответственности. В этом

отношении с хирургической специальностью нельзя сравнить ни одну другую врачебную деятельность. Может быть, поэтому многие писатели

посвятили хирургам романы и повести. Личность хирурга заслуженно привлекает к себе внимание, т. к. заниматься хирургией может далеко не

каждый. Современник Н. И. Пирогова знаменитый английский хирург Эстли Купер так сформулировал качества, предъявляемые к хирургу: "он

должен иметь зрение орла, нежные руки женщины и сердце льва". Однако в настоящее время только этих качеств недостаточно! От современного

хирурга требуется много знаний, причем не только профессиональных (топографической анатомии, виртуозной техники), но и смежных дисциплин

(пат. анатомии, пат. физиологии), чтобы предвидеть и предупреждать осложнения, которые могут возникнуть как в ходе самой операции, так и в

послеоперационном периоде. Хорошая спортивная форма также необходима хирургу, т. к. хирургия - это еще и тяжелый труд, требующий

мобилизации всех психических и физических сил.

Оперативным доступом называется часть операции, обеспечивающая обнажение органа.

Оперативным приемом - операцию на самом органе, т.е. особенности техники данной операции.

Например, при операции аппендэктомии оперативным доступом является разрез брюшной стенки, а само удаление червеобразного отростка -

оперативным приемом.

Оперативный доступ

Какие требования предъявляются к доступам?

1 требование - атравматичность, когда мышцы не рассекаются, а разъединяются вдоль волокон, и не повреждаются сосуды и нервы.

2 требование - анатомическая доступность, т.е. пространственные отношения, создающие наилучшие условия для работы хирурга в ране

мануально и инструментами.

Для объективной оценки доступа существует ряд критериев, разработанных Созон-Ярошевичем:

Последнее зависит прежде всего от величины раны. Швейцарский хирург Кохер по этому поводу высказался очень точно: "Доступ должен быть

настолько большим, насколько это нужно, и настолько малым, насколько это возможно".

К сожалению именно в выборе оптимальных размеров разреза молодые хирурги допускаю ошибки. Очень часто они дабы получить одобрение со

стороны своих коллег, пытаются выполнить оперативный прием из небольшого разреза. А поскольку из такого разреза выполнение операции

затрудняется, хирург обвиняет ассистента в том, что тот плохо разводит рану крючками. Ассистент старается изо всех сил, что приводит к

травматизации тканей: разрыву мышц, образованию гематом и т.д. Да и сам орган, на котором выполняется оперативный прием, при выведении в

узкую рану, как правило, травмируется и имеет после операции весьма плачевный вид. Часто после такой операции наступают осложнения. И

наоборот, опытный хирург никогда не постесняется сделать большой доступ, из которого легко осуществить оперативный прием. Вот почему у

хирургов распространен меткий афоризм, перефразирующий высказывание Кохера: "Большой хирург - большой разрез, маленький хирург -

маленький разрез".

Оперативный прием

При выполнении оперативного приема хирург должен руководствоваться следующими положениями, рекомендованными известным советским

хирургом Н. Н. Бурденко:

Говоря о технической возможности , следует иметь в виду уровень квалификации хирурга и техническое оснащение операции (наличие

анестезиологической службы, специальной аппаратуры, инструментария и др.).

Например, операции на легком и пищеводе долгое время не могли войти в широкую практику из-за возникавшего во время операции

ВВЕДЕНИЕ

Изучать поверхность Земли начали еще в седую древность. Почти вся деятельность и жизнь человека сосредоточены на поверхности Земли. Поэтому не случайно еще много веков тому назад зародились науки о Земле - геодезия, топография, картография, география. Они тесно связаны между собой, и любая из них очень важна.
Курс «Топографии с основами геодезии» является одним из составных элементов подготовки специалистов и магистров географии. Программа курса составлена применительно к учебному плану естественно-географических факультетов с учетом школьной программы по географии и программы школьного факультативного курса по основам топографии и картографии. В задачу курса входит: чтение топографических карт, планов, аэрофотоснимков, их использование при изучении местности; ориентирование на местности; раскрытие свойств и особенностей топографических карт, изучение путей и методов их использования; приобретение навыков топографических съемок на местности.
Студены, работая с топографическими картами, развивают умения, которые могут быть применены в их будущей трудовой деятельности. Для учителя географии карта является средством его труда.
Программа курса «Топографии с основами геодезии» включает объем знаний, который должен быть получен студентами на лекциях, лабораторных занятиях, на полевой практике и в результате самостоятельной работы.
Контроль над усвоением пройденного материала будет осуществляться на лабораторных занятиях, зачете, экзамене, а также в процессе компьютерного тестирования.
Для выполнения лабораторных работ необходимо завести отдельную тетрадь объемом не менее 48 стр. После выполнения каждой лабораторной работы студенты обязаны сдать тетради на проверку преподавателю.

1.1.1. Предмет топографии и геодезии

Топография - научная дисциплина, изучающая земную поверхность (т. е. элементы ее физической поверхности и расположенные на ней объекты деятельности человека) в геометрическом отношении.
Целью этого изучения является создание топографических карт - подробного изображения местности (т. е. участков земной поверхности) на плоскости.
К числу основных научных и практических задач, решаемых топографией, следует отнести разработку и совершенствование методов создания топографических карт, способов изображения на них земной поверхности, способов и правил использования карт в решении научных и практических задач.

Геодезия (от гео.. и греч. daio — разделяю), система наук об определении формы и размеров Земли и об измерениях на земной поверхности для отображения ее на планах и картах.
Подразделяется на астрономогеодезию (высшую геодезию), изучающую фигуру и гравитационное поле Земли, а также теорию и методы построения опорной геодезической сети, топографию, прикладную геодезию и др.

Измерения на земной поверхности, необходимы для наблюдений за движениями и деформациями земной коры, изменениями береговой линии океанов и морей, для установления высоты уровня морей и их разностей, изучения движения земных полюсов, а также для решения разнообразных инженерных задач гражданского, промышленного, сельскохозяйственного, транспортного строительства и др.

Основной метод изучения земной поверхности - топографическая съемка, которая включает комплекс измерительных, вычислительных и графических работ.
Координатные системы, используемые для указания взаимного расположения элементов (точек) земной поверхности, позволяют определить их плановое (т. е. местонахождение на какой-либо поверхности) и высотное (т. е. расположение над исходной поверхностью) положение.

1.1.2. Связь топографии и геодезии с другими науками.
Их роль в развитии народного хозяйства

Топография и геодезия тесно связаны с картографией - наукой об отображении и исследовании явлений природы и общества (их размещения, свойств, взаимосвязей и изменений во времени) посредством картографических изображений. К таким изображениям относятся и топографические карты. Картография разрабатывает общие вопросы изображения реальной действительности на картах.
Тесные связи у топографии и геодезии с географией, геологией, почвоведением. Данные этих наук способствуют более глубокому пониманию свойств физической поверхности Земли, правильному изображению их на картах.
Достижения авиационной и фотографической техники позволили развить в топографии такие ее направления, как: аэрофототопография и наземная фототопография. Широкое использование фотоснимков определило связь топографии с фотограмметрией, решающей задачи измерения объектов земной поверхности и определения их координат по фотоизображениям.
Освоение космоса привело к появлению спутниковой геодезии, изучающей фигуру и размеры Земли с помощью искусственных спутников, космических ракет, кораблей и станций. С разработкой методов получения информации о земной поверхности по космическим снимкам стала развиваться космическая топография.
Методы решения научных и практических задач геодезии и топографии основываются на законах математики и физики. При помощи математики устанавливается зависимость между результатами измерений на местности и величинами, необходимыми для создания карт, обосновывается и контролируется точность проводимых работ. Сведения из физики, особенно таких ее разделов, как оптика, радиофизика, электроника, необходимы при разработке новейших геодезических приборов и инструментов. Достижения кибернетики и современной вычислительной техники являются базой для автоматизации работ по созданию топографических карт.
Значение топографии и геодезии для науки и практики трудно переоценить. Топографические карты позволяют изучать поверхность Земли с точки зрения условий для жизнедеятельности человека, степени освоения конкретных территорий и возможностей дальнейшего развития этого процесса. Топографические карты являются основой для отображения результатов научных исследований и практической деятельности в географии, геологии и других науках о Земле. Они нужны при разведке и эксплуатации природных богатств, при планировании и размещении производительных сил страны, проектировании инженерных сооружений, при разработке и осуществлении стратегических, тактических, военно-инженерных и многих других задач. Геодезические измерения широко используются при изысканиях, проектировании и строительстве заводов и фабрик, гидротехнических и мелиоративных сооружений, атомных станций, дорожной сети и др.

1.2. ПОНЯТИЕ О ФОРМЕ И РАЗМЕРАХ ЗЕМЛИ

Суша составляет приблизительно одну треть от всей поверхности Земли. Она возвышается над уровнем моря в среднем на 900 - 950 м. По сравнению с радиусом Земли (R = 6371 км) это весьма малая величина. Поскольку большую часть поверхности Земли занимают моря и океаны, то за форму Земли можно принять уровенную поверхность, совпадающую с невозмущенной поверхностью Мирового океана и мысленно продолженную под материками.По предложению немецкого ученого Листинга данную фигуру назвали геоидом .
Фигура, ограниченная уровенной поверхностью, совпадающей с поверхностью воды Мирового океана в спокойном состоянии, мысленно продолженная под материками, называется геоидом.
Под Мировым океаном понимают поверхности морей и океанов, связанные между собой.
Поверхность геоида во всех точках перпендикулярна отвесной линии.
Фигура геоида зависит от распределения масс и плотностей в теле Земли. Она не имеет точного математического выражения и является практически неопределимой, в связи с чем в геодезических измерениях вместо геоида используется его приближение - квазигеоид. Квазигеоид , в отличие от геоида, однозначно определяется по результатам измерений, совпадает с геоидом на территории Мирового океана и очень близок к геоиду на суше, отклоняясь лишь на несколько сантиметров на равнинной местности и не более чем на 2 метра в высоких горах.
Для изучения фигуры нашей планеты сначала определяют форму и размеры некоторой модели, поверхность которой является сравнительно хорошо изученной в геометрическом отношении и наиболее полно характеризует форму и размеры Земли. Затем, принимая эту условную фигуру за исходную, определяют относительно нее высоты точек. Для решения многих задач геодезии за модель Земли принят эллипсоид вращения (сфероид).

Направление отвесной линии и направление нормали (перпендикуляра) к поверхности эллипсоида в точках земной поверхности не совпадают и образуют угол ε , называемый уклонением отвесной линии . Данное явление связано с тем, что плотность масс в теле Земли неодинакова и отвесная линия отклоняется в сторону более плотных масс. В среднем его величина составляет 3 - 4", а в местах аномалий достигает десятков секунд. Реальный уровень моря в разных регионах Земли отклонятся более чем на 100 метров от идеального эллипсоида.

Рис. 1.3. Соотношение поверхностей геоида и земного эллипсоида.
1) мировой океан; 2) земной эллипсоид; 3) отвесные линии; 4) тело Земли; 5) геоид

Для определения размеров земного эллипсоида на суше проводились специальные градусные измерения (определялось расстояние по дуге меридиана в 1º). На протяжении полутора веков (с 1800 по 1940 гг.) были получены различные размеры земного эллипсоида (эллипсоиды Деламбера (д"Аламбера), Бесселя, Хейфорда, Кларка, Красовского и др.).
Эллипсоид Деламбера имеет только историческое значение как основа для установления метрической системы мер (на поверхности эллипсоида Деламбера расстояние в 1 метр равно одной десятимиллионной расстояния от полюса до экватора).
Эллипсоид Кларка используется в США, странах Латинской Америки, Центральной Америки и других странах. В Европе используется эллипсоид Хейфорда. Он же был рекомендован в качестве международного, однако параметры указанного эллипсоида получены по измерениям, выполненным только на территории США, и, кроме того, содержат большие ошибки.
До 1942 г. в нашей стране применялся эллипсоид Бесселя. В 1946 г. размеры земного эллипсоида Красовского были утверждены для геодезических работ на территории Советского Союза и действуют до настоящего времени на территории Украины.
Эллипсоид, который используется данным государством, либо обособленной группой государств, для производства геодезических работ и проектирования на его поверхность точек физической поверхности Земли, называют референц-эллипсоидом. Референц-эллипсоид служит вспомогательной математической поверхностью, к которой приводят результаты геодезических измерений на земной поверхности. Наиболее удачная математическая модель Земли для нашей территории в виде референц-эллипсоида была предложена проф. Ф. Н. Красовским. На этом эллипсоиде основана геодезическая система координат Пулково-1942 (СК-42), которая использовалась в Украине для создания топографических карт с 1946 по 2007 год.

Размеры земного эллипсоида по Красовскому


Малая полуось (полярный радиус)

Большая полуось (экваториальный радиус)

Средний радиус Земли, принимаемой за шар

Полярное сжатие (отношение разницы полуосей к большой полуоси)

Площадь поверхности Земли

510083058 км²

Длина меридиана

Длина экватора

Длина дуги 1° по меридиану на широте 0°

Длина дуги 1° по меридиану на широте 45°

Длина дуги 1° по меридиану на широте 90°

При вводе Пулковской системы координат и Балтийской системы высот Совет Министров СССР возложил на Генеральный Штаб вооруженных сил СССР и Главное управление геодезии и картографии при Совете Министров СССР перевычисление в единую систему координат и высот триангуляционной и нивелирной сети, выполненной до 1946 года, и обязал их закончить эту работу в 5-летний срок. Контроль за переизданием топографических карт был возложен на Генеральный Штаб вооруженных сил СССР, а морских карт на Главный Штаб военно-морских сил.
1 января 2007 года на территории Украины введена УСК-2000 - Украинская система координат взамен СК-42. Практической ценностью новой системы координат является возможность эффективного использования глобальных навигационных спутниковых систем в топографо-геодезическом производстве, которые имеют целый ряд преимуществ в сравнении с традиционными методами.
Сведений о том, что в Украине произведено перевычисление координат СК-42 в УСК-2000 и изданы новые топографические карты автор этого учебного пособия не имеет. На учебных топографических картах, изданных в 2010 году Государственным научно-производственным предприятием «Картография», в левом верхнем углу по-прежнему осталась надпись «Система координат 1942 г.».
Система координат 1963 года (СК-63) являлась производной от предыдущей государственной системы координат 1942 года и имела определенные параметры связи с ней. Для обеспечения секретности в СК-63 были искусственно искажены реальные данные. С появлением мощной вычислительной техники для высокоточного определения параметров связи между различными координатными системами эта система координат утратила свой смысл в начале 80-х годов. Следует заметить, что СК-63 была отменена решением Совета Министров СССР в марте 1989 года. Но впоследствии, учитывая большие объемы накопленных геопространственных данных и картографических материалов (включая результаты выполнения землеустроительных работ времен СССР), срок ее использования был продлен до тех пор, пока все данные не будут переведены в действующую государственную систему координат.
Для спутниковой навигации используется трёхмерная система координат WGS 84 (англ. World Geodetic System 1984). В отличие от локальных систем, является единой системой для всей планеты. WGS 84 определяет координаты относительно центра масс Земли, погрешность составляет менее 2 см. В WGS 84 нулевым меридианом считается IERS Reference Meridian. Он расположен в 5,31″ к востоку от Гринвичского меридиана. За основу взят сфероид с большим радиусом - 6 378 137 м (экваториальный) и меньшим - 6 356 752,3142 м (полярный). Отличается от геоида менее чем на 200 м.
Особенности строения фигуры Земли полностью учитываются при математической обработке высокоточных геодезических измерений и создании государственных геодезических опорных сетей. Ввиду малости сжатия (отношение разности большой, экваториальной полуоси (а ) земного эллипсоида и малой полярной полуоси (b ) к большой полуоси [a - b ]/b ) ≈ 1:300) при решении многих задач за фигуру Земли с достаточной для практических целей точностью можно принять сферу , равновеликую по объему земному эллипсоиду . Радиус такой сферы для эллипсоида Красовского R = 6371,1 км.

1.3. ОСНОВНЫЕ ЛИНИИ И ПЛОСКОСТИ ЗЕМНОГО ЭЛЛИПСОИДА

При определении положения точек на поверхности Земли и на поверхности земного эллипсоида пользуются некоторыми линиями и плоскостями.
Известно, что точки пересечения оси вращения земного эллипсоида с его поверхностью являются полюсами, один из которых называется Северным Рс , а другой - Южным Рю (рис. 1.4).


Рис. 1.4. Основные линии и плоскости земного эллипсоида

Сечения земного эллипсоида плоскостями, перпендикулярными к малой его оси, образуют след в виде окружностей, которые называются параллелями. Параллели имеют различные по величине радиусы. Чем ближе расположены параллели к центру эллипсоида, тем больше их радиусы. Параллель с наибольшим радиусом, равным большой полуоси земного эллипсоида, называется экватором . Плоскость экватора проходит через центр земного эллипсоида и делит его на две равные части: Северное и Южное полушария.
Кривизна поверхности эллипсоида является важной характеристикой. Она характеризуется радиусами кривизны меридианного сечения и сечения первого вертикала, которые называются главными сечениями
Сечения поверхности земного эллипсоида плоскостями, проходящими через его малую ось (ось вращения), образуют след в виде эллипсов, которые называются меридианными сечениями .
На рис. 1.4 прямая СО" , перпендикулярная к касательной плоскости КК" в точке ее касания С , называется нормалью к поверхности эллипсоида в этой точке. Каждая нормаль к поверхности эллипсоида всегда лежит в плоскости меридиана, а следовательно, пересекает ось вращения эллипсоида. Нормали к точкам, лежащим на одной параллели, пересекают малую ось (ось вращения) в одной и той же точке. Нормали к точкам, расположенным на разных параллелях, пересекаются с осью вращения в различных точках. Нормаль к точке, расположенной на экваторе, лежит в плоскости экватора, а нормаль в точке полюса совпадает с осью вращения эллипсоида.
Плоскость, проходящая через нормаль, называется нормальной плоскостью , а след от сечения этой плоскостью эллипсоида - нормальным сечением . Через любую точку на поверхности эллипсоида можно провести бесчисленное множество нормальных сечений. Меридиан и экватор являются частными случаями нормальных сечений в данной точке эллипсоида.
Нормальная плоскость, перпендикулярная к плоскости меридиана в данной точке С , называется плоскостью первого вертикала , а след, по которой она пересекает поверхность эллипсоида, - сечением первого вертикала (рис. 1.4).
Взаимное положение меридиана и любого нормального сечения, проходящего через точку С (рис. 1.5) на данном меридиане, определяется на поверхности эллипсоида углом А , образованным меридианом данной точки С и нормальным сечением.


Рис. 1.5. Нормальное сечение

Этот угол называется геодезическим азимутом нормального сечения. Он отсчитывается от северного направления меридиана по ходу часовой стрелки от 0 до 360°.
Если принять Землю за шар, то нормаль к любой точке поверхности шара пройдет через центр шара, а любая нормальная плоскость образует на поверхности шара след в виде окружности, которая называется большим кругом.

2.3. МЕТОДЫ ОПРЕДЕЛЕНИЯ ФИГУРЫ И РАЗМЕРОВ ЗЕМЛИ

При определении фигуры и размеров Земли использовались следующие методы:

Астрономо - геодезический метод
Определение фигуры и размеров Земли основано на использовании градусных измерений, суть которых сводится к определению линейной величины одного градуса дуги меридиана и параллели на разных широтах. Однако непосредственные линейные измерения значительной протяженности на земной поверхности затруднены, ее неровности существенно снижают точность работ.

Метод триангуляции
Заключается в геодезическом построении на местности системы пунктов, образующих треугольники, у которых измеряются все углы и длины некоторых базовых (базисных) сторон.
Высокая точность измерения значительных по протяженности расстояний обеспечивается применением метода триангуляции, разработанного в XVII в. голландским ученым В. Снеллиусом (1580 - 1626).
Триангуляционные работы для определения дуг меридианов и параллелей проводились учеными разных стран. Еще в XVIII в. было установлено, что один градус дуги меридиана у полюса длиннее, чем у экватора. Такие параметры характерны для эллипсоида, сжатого у полюсов. Этим подтверждалась гипотеза И. Ньютона о том, что Земля в соответствии с законами гидродинамики должна иметь форму эллипсоида вращения, сплюснутого у полюсов.

Геофизический (гравиметрический ) метод
Он основан на измерении величин, характеризующих земное поле силы тяжести, и их распределении на поверхности Земли. Преимущество этого метода в том, что его можно применять на акваториях морей и океанов, т. е. там, где возможности астрономо-геодезического способа ограничены. Данные измерений потенциала силы тяжести, выполненные на поверхности планеты, позволяют вычислить сжатие Земли с большей точностью, чем астрономо-геодезическим методом.
Начало гравиметрическим наблюдениям было положено в 1743 г. французским ученым А. Клеро (1713 - 1765). Он предположил, что поверхность Земли имеет вид сфероида, т. е. фигуры, которую приняла бы Земля, находясь в состоянии гидростатического равновесия под влиянием только сил взаимного тяготения ее частиц и центробежной силы вращения около неизменной оси. А. Клеро предположил также, что тело Земли состоит из сфероидальных слоев с общим центром, плотность которых возрастает к центру.

Космический метод
Развитие космического метода и изучения Земли связано с освоением космического пространства, которое началось с момента запуска советского искусственного спутника Земли (ИСЗ) в октябре 1957 г. Перед геодезией были поставлены новые задачи, связанные с бурным развитием космонавтики. В их числе - наблюдение за ИСЗ на орбите и определение их пространственных координат в заданный момент времени. Выявленные отклонения реальных орбит ИСЗ от предвычисленных, вызванные неравномерным распределением масс в земной коре, позволяют уточнить представление о гравитационном поле Земли и в конечном результате о ее фигуре.

Вопросы и задания для самоконтроля

  1. Дайте определения: «Топография», «Геодезия», «Топографическая карта».
  2. С какими науками связана топография? Объясните на примерах эту связь.
  3. Для каких целей используются данные о форме и размерах Земли?

    По каким признакам в древности определили, что Земля имеет шарообразную форму?

    Какую фигуру называют геоидом?

    Какую фигуру называют эллипсоидом?

    Какую фигуру называют референц-эллипсоидом?

    Каковы элементы и размеры эллипсоида Красовского?

    Назовите основные линии и плоскости земного эллипсоида.

    Какие методы используются для определения фигуры и размеров Земли?

    Дайте краткую характеристику каждому методу.

Топография (от греч. topos - место, местность и grapho - пишу), научно-техническая дисциплина, изучающая земную поверхность и размещенные на ней объекты в геометрическом отношении, с целью изображения их на топографических картах, планах и профилях. Главной задачей топографии является - создание топографических карт и планов. Основной метод изучения земной поверхности - топографическая съемка. Топографическая съемка - это комплекс (совокупность) полевых измерений на местности и камеральных работ для создания топографических карт земной поверхности в заданном масштабе.
Термин «топография» часто принимают эквивалентным термину «геодезия», что в переводе с греческого означает землеразделение (geodaisia, ge - земля и daizo - делю на части, разделяю). С современной точки зрения, геодезия является наукой о методах изучения формы и размеров Земли, изображения ее поверхности на картах, а также о методах специальных измерений необходимых для решения инженерных, экономических и других задач. В процессе своего развития геодезия разделилась на ряд связанных между собой самостоятельных научных дисциплин - высшую геодезию, топографию, космическую геодезию, фототопографию и инженерную геодезию.
К задачам высшей геодезии относятся определение фигуры и размеров Земли, изучение гравитационного поля Земли, определение на Земле взаимного положения точек, составляющих государственную геодезическую сеть (ГГС), необходимую для изучения земной поверхности и точного ее картографирования на плоскости с учетом возникающих при этом искажений.
В 1960-х гг. начал интенсивно развиваться новый раздел высшей геодезии - космическая (спутниковая) геодезия. Задачами данной дисциплины являются исследование основных параметров и внешнего гравитационного поля Земли и других планет Солнечной системы, а также определение координат пунктов земной поверхности в геоцентрической системе координат.
Фототопография (аэрофототопография) занимается изучением методов и средств создания топографических карт и планов по фотоснимкам поверхности Земли. Аэрофототопография тесно связана с фотограмметрией. Фотограмметрия - это научная и инженерно-техническая дисциплина, занимающаяся определением формы, размеров и положения различных объектов местности путем измерения их изображения на фотоснимках.
Инженерная геодезия, имеющая прикладное значение, представляет комплекс геодезических работ, выполняемых при изысканиях, строительстве и эксплуатации различных сооружений, а также при монтаже оборудования, при наблюдениях за вертикальными и горизонтальными смещениями инженерных сооружений.
В своей теории и практическом применении топография использует достижения целого ряда наук: математики, физики, электроники и др. Большое значение топография имеет для изучения географических дисциплин картографии, геоморфологии, почвоведения, геологии, ландшафтоведения и др.
В задачу картографии входят вопросы теории и способов изображения на плоскости частей земной поверхности (отдельных государств, материков, земного шара), а также разработка методов и процессов создания и использования различных карт.
Значение топографии для науки и практики трудно переоценить. Особенно велика роль топографии при картографировании природной среды. Описания местности не могут заменить топографических карт и планов, на которых наглядно передаются все подробности местности. Топографические карты являются необходимыми при проведении полевых экспедиционных работ и представляются незаменимыми при выполнении картометрических исследований. Созданные топографические карты являются основным материалом для составления общегеографических карт.
Большая роль принадлежит топографии и геодезии в народном хозяйстве. Геодезические измерения предшествуют многим основным видам деятельности в развитии народного хозяйства страны. Геодезические измерения производятся на поверхности Земли и в ее недрах, в приземных слоях атмосферы, в океанах и морях.
Геодезические изыскания выполняются на стадии проектирования, строительства и реконструкции населенных пунктов, железных и шоссейных дорог, тоннелей, мостов, магистральных нефте- и газопроводов и других объектов, а также для наблюдений за сдвигом и осадкой крупных сооружений.
Огромное значение геодезические работы имеют в сельском хозяйстве, с которым геодезия связана с древних времен. Проведение землеустроительных работ, направленных на рациональное использование земельных ресурсов, учет сельскохозяйственных земель и их качества, строительство гидромелиоративных и гидротехнических сооружений - все это тесно связано с геодезическими измерениями.
Геологические изыскания начинаются и заканчиваются с использованием геодезических материалов и измерений. Строительство , шахт и карьеров невозможно без проведения геодезических работ, которые выполняют горные геодезисты - маркшейдеры.
Особая роль принадлежит геодезии в вопросах обороноспособности государства. Топографические карты используются для изучения местности, при разработке военных операций и отображения на них боевой обстановки.

Краткий очерк развития топографии и геодезии

Истоки зарождения геодезии проследить исторически трудно. Вероятно, они относятся к тому времени, когда люди начали пользоваться землей для выращивания сельскохозяйственных культур. Поэтому возникла необходимость в делении земли, установлении площади ее отдельных участков. Позже методы геодезии потребовались для строительства оросительных и осушительных систем, разного рода инженерных сооружений.
Считается, что возникновение геодезии связано с деятельностью человека в плодородных долинах рек Нила, Тигра и Евфрата. В Египте сохранились древнейшие инженерные сооружения, строительство которых было невозможно без хорошо разработанных геодезических методов измерений. В 6 тысячелетии до н. э. был построен канал, соединяющий р. Нил с Красным морем. В 5 тысячелетии до н. э. проводились большие ирригационные работы на р. Нил и мероприятия по осушению болот и регулированию водных ресурсов. В это же время в Египте были построены грандиозные сооружения (пирамида Хуву с квадратным основанием, сторона которого равна 227,5 м и высотой 137,2 м, а также пирамида Хофры и др.). Возведение подобных сооружений несомненно было связано с геодезическими работами.
Однако геодезия, как наука, с разработкой соответствующих теоретических обоснований и методов оформилась несколько позже в Древней Греции и получила дальнейшее развитие в Древнем Риме.
В V в. до н. э. греческий ученый Парменид высказал предположение о шарообразности Земли. Доказательства этой гипотезы привел в своих сочинениях Аристотель (384-322 гг. до н. э.). Он же ввел термин «геодезия» и относил эту науку к отрасли знаний связанной с астрономией и географией.
Выдающийся астроном и географ, глава Александрийской библиотеки Эратосфен (276-194 гг. до н. э.) в своем труде «Географика» подробно рассмотрел вопрос о фигуре Земли, привел данные о размерах и форме ее обитаемой части - ойкумены, и показал последнюю на карте. Ему же принадлежит и наиболее близкое к действительности определение длины земного меридиана.
Развитие современных методов при выполнении геодезических работ относится к XVII в. Большим шагом вперед явилось разработка голландским ученым В. Снеллиусом метода триангуляции, благодаря которому стало возможным проводить на земной поверхности линейные измерения огромной протяженности, что позволило определять длины дуг параллелей и меридианов Земли. Во второй половине XVII в. появились первые геодезические приборы с оптической трубой - нивелиры. Теодолит с оптической трубой был изобретен лишь в конце XVIII в. английским механиком Рамсденом.
До конца XVII в. при определении размеров Земли исходным считалось, что Земля - шар. Ньютон (1643-1727) на основе открытого им закона всемирного тяготения теоретически обосновал неизбежность сплюснутости Земли у полюсов, если она когда-то была в огненно-жидком состоянии. Для проверки этой теории французская академия наук произвела геодезические измерения в Перу в 1735-1742 гг. по дуге пересекающей экватор и в 1736-1737 гг. в Лапландии на широте около 66º. Эти исследования подтвердили теорию Ньютона.
В конце XVIII в. французские ученые Ж. Деламбр и П. Мешен измерили дугу меридиана от Барселоны до Дюнкерка. На основе этих измерений были получены одни из первых точных данных о размерах земного эллипсоида и принята мера длинные линий - метр, как одна десятимиллионная часть четверти дуги Парижского меридиана.
Большой вклад в развитие топографии и геодезии внесли немецкие ученые К. Гаусс (теория ошибок измерений, общая теория изображения сферической поверхности на плоскости с сохранением равноугольности) и Ф. Бессель (определение параметров земного эллипсоида).
В России геодезия и топография получили широкое развитие при Петре I. В 1701 г. в Москве была построена первая в России школа математических и навигационных наук, в задачу которой входила подготовка навигаторов и геодезистов. В 1715 г. в Санкт-Петербурге была открыта морская академия с классом геодезии. В 1721 г. была разработана первая в России Инструкция по выполнению топографических съемок, на основе которой были составлены карты 164 уездов Европейской части России и 26 уездов Сибири. Большим значением для развития геодезии было открытие в 1739 г. Географического департамента. Вскоре были изданы первые учебники по геодезии «Практическая геометрия» С. Назарова и «Первые основания геодезии» С. К. Котельникова.
В 1779 г. в Москве была основана Межевая школа, впоследствии - Межевый институт - высшее учебное заведение по подготовке геодезистов. К концу XVIII в. на территории России были определены координаты 67 астрономических пунктов. В 1797 г. было создано Депо карт, преобразованное в 1812 г. в Военно-топографическое депо, а затем в 1822 г. - в Корпус военных топографов. Наряду с Корпусом военных топографов геодезические работы выполняли Переселенческое управление, Межевое ведомство, Главное гидрографическое управление, Горное ведомство, Министерство путей сообщения, Русское географическое общество.
Геодезические работы по определению формы и размеров Земли в России были начаты в 1816 г. геодезистами академиком Петербургской Академии наук, директором Пулковской обсерватории В. Я. Струве (1793-1864) и почетным членом Петербургской Академии наук, генералом К. И. Теннером (1783-1860). Градусное измерение дуги меридиана протяженностью 25º 20" от устья р. Дунай до Ледовитого океана (г. Фугленс, Норвегия). Пункты наблюдения располагались и на территории Беларуси.
Большой вклад в развитие геодезии в России в XIX в. внес профессор А. П. Болотов, который в 1845 г. издал учебник «Курс высшей и низшей геодезии». Развитию геодезической теории и практики в то время содействовали научные труды ученых-геодезистов А. А. Тилло, В. В. Витковского, Ф. А. Слудского, А. Н. Савича, Д. Д. Гедеонова и др.
Достоверные сведения о проведении топографо-геодезических работ на территории Беларуси относятся к XVI в., когда она являлась основой Великого княжества Литовского. С середины XVI в. до середины XVIII в. большой объем геодезических работ выполнен при землеустройстве во время проведения «Валочнай памеры» для достоверного учета земель. Работы выполнялись на основе специальных инструкций - «Уставов», в которых содержались рекомендации мерщикам с примерами расчетов согласно разработанным схемам. О достаточно высоком уровне развития топографии и геодезии в то время свидетельствует карта Великого княжества Литовского (масштаб 1:1 260 000), составленная под руководством Н. Х. Радивилла в 1613 г. Картометрические измерения показали, что при ее составлении использовались достаточно точные карты и планы более крупных масштабов. Позже, в 1655 г. была издана карта Виленского и Трокского воеводств.
Начало научно обоснованных топографо-геодезических работ на территории Беларуси можно отнести к 1753 г., когда была создана Виленская астрономическая обсерватория. Именно с созданием первых триангуляционных сетей на территории Виленской губернии в 1816-1821 гг. началось картографирование западной части Российской империи. Для этого на территории Гродненской и Минской губерний были построены ряды триангуляции (часть дуги Струве). Значительный вклад в создание триангуляции внесли белорусы И. Ходько и Н. Глушневич. Результатом проведенных топографических съемок на новой геодезической основе явилось создание на всю территорию Беларуси карт масштабов 1:420 000 (десятиверстка) и 1:126 000 (трехверстка), а на значительную площадь - карт масштабов 1:84 000 (двухверстка) и 1:42 000 (одноверстка).
В 1863-1873 гг. на территории Беларуси проводилось градусное измерение длины дуги параллели 52° северной широты под руководством И. И. Жилинского. В 1913-1916 гг. по линии Петербург - Витебск - Могилев - Гомель - Киев - Одесса был проложен нивелирный ход высокой точности с целью определения разности высот уровней Балтийского и Черного морей.
15 марта 1919 г. был подписан декрет о создании Государственной картографо-геодезической службы - Высшего геодезического управления, реорганизованного впоследствии в Главное управление геодезии и картографии (ГУГК) при СМ СССР.
В конце 1920-х гг. Ф. Н. Красовский разработал программу развития ГГС. Созданная по этой программе единая астрономо-геодезическая сеть не имела аналогов в мировой практике по стройности построения и точности. В 1940 г. под руководством Ф. Н. Красовского и А. А. Изотова были вычислены новые размеры Земли, принятые для геодезических и картографических работ на территории СССР. Таким образом, была создана единая государственная опорная геодезическая сеть, частью которой является существующая государственная геодезическая сеть Республики Беларусь.
Начало геодезического образования в Беларуси относится к 1859 г., когда в Горе-Горецком земледельческом институте были открыты землемерно-таксаторские классы. В настоящее время подготовку специалистов осуществляют Борисовский политехникум - техников-топографов и Полоцкий политехнический университет, готовящий инженеров-геодезистов.
В настоящее время на всю территорию Республики Беларусь созданы топографические карты масштаба 1:10 000, а на территорию городов и городских поселков - топографические планы масштабов 1:5000 и 1:2000, в том числе, на застроенные территории городов - топопланы масштабов 1:1000 и 1: 500.
Все топографо-геодезические работы государственного значения выполняются производственными подразделениями «Белгеодезия», «Белаэрокосмогеодезия» и другими, входящими в структуру Комитета по земельным ресурсам, геодезии и картографии при Совете Министров Республики Беларусь.

Вот еще



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама